1
線形比較による近似1d TSP?
1次元の巡回セールスマンパス問題は、明らかに、並べ替えと同じことなので、時間で比較することで正確に解決できますが、近似だけでなく正確にも定式化されますソリューションは理にかなっています。入力が実数であり、整数への丸めが可能な計算モデルでは、任意の定数について、時間因子内に近似するのは簡単です。:最小値と最大値を見つけ、元の値から距離以内の数値にすべてを丸めてから、基数ソートを使用します。しかし、丸めのあるモデルには複雑な理論があるため、計算の弱いモデルについてはどうでしょうか?O(nlogn)O(nlogn)O(n\log n)1+O(n−c)1+O(n−c)1+O(n^{-c})cccO(n)O(n)O(n)(max−min)n−(c+1)(max−min)n−(c+1)(\max-\min)n^{-(c+1)} そのため、計算の線形比較ツリーモデル(各比較ノードは入力値の線形関数の符号をテスト)で、時間の複雑度がo(n \ logであるアルゴリズムによって、1次元TSPをどれだけ正確に近似できるかn)o(nlogn)o(nlogn)o(n\log n)?同じ丸め方法により、n ^ {1-o(1)}の形式の近似比をn1−o(1)n1−o(1)n^{1-o(1)}実現できます(バイナリ検索を使用して丸めを行い、より粗く丸めて十分に高速化する)。しかし、いくつかの\ epsilon> 0に対してO(n ^ {1- \ epsilon})のような近似比を達成することは可能ですか?O(n1−ϵ)O(n1−ϵ)O(n^{1-\epsilon})ϵ>0ϵ>0\epsilon>0