2
多項式時間で正確または近似的に解くことができる数学プログラムのクラスは何ですか?
私は、どのタイプの(連続)数学プログラム(MP)を効率的に解くことができ、どのタイプはできないかについて、連続最適化の文献とTCSの文献にかなり混乱しています。継続的最適化コミュニティは、すべての凸型プログラムを効率的に解くことができると主張しているようですが、「効率的」の定義はTCSの定義と一致しないと思います。 この質問はここ数年私を悩ませており、明確な答えを見つけることができないようです。多項式時間で正確に解くことができるMPのクラス、およびその手段によって、これを一度解決するのに役立つことを願っています。そして、多項式時間で正確に解けないMPの最適解を近似することについて何が知られていますか? 以下に、この質問に対する不完全な回答を示しますが、これは一部の場所でも間違っている可能性があります。そのため、間違っている箇所を確認して修正してください。また、答えられないいくつかの質問も述べています。 楕円体法または内点法を実行し、その後、丸め処理を実行することにより、線形計画法を多項式時間で正確に解くことができることは誰もが知っています。線形プログラミングは、「分離オラクル」を提供できる限り、任意の超大量の線形制約を持つLPファミリーに直面する場合、変数の数の時間多項式で解くことさえできます。 、そのポイントが実行可能かどうかを決定するか、実行可能なポイントの多面体からポイントを分離する超平面を出力します。同様に、これらのLPの双対に分離アルゴリズムを提供する場合、任意の超大量の変数を持つLPファミリーに直面するときの制約の数における時間多項式の線形計画法。 楕円体法は、目的関数の行列が正(半?)定である場合に、多項式時間で2次プログラムを解くこともできます。私は、分離オラクルのトリックを使用することにより、信じられないほどの数の制約を処理している場合、これを行うこともできると考えています。本当? 最近、半正定値プログラミング(SDP)は、TCSコミュニティで多くの人気を得ています。内点法または楕円法を使用して、任意の精度でそれらを解決できます。平方根を正確に計算できないという問題のために、SDPは正確に解決できないと思います。(?)SDP用のFPTASがあると言ったら正しいでしょうか?私はどこでもそれを述べたことを見なかったので、それはおそらく正しくない。しかし、なぜ? LPとSDPを任意の精度で正確に解くことができます。他のクラスの円錐プログラムはどうですか?楕円法を使用して、2次コーンプログラムを任意の精度で解くことができますか?知りません。 楕円体法を使用できるMPのクラスはどれですか?このようなMPは、任意の精度まで答えを与えるためにどのような特性を満たす必要があり、多項式時間で正確な解を得るためにどのような追加の特性が必要ですか?内点法についても同じ質問です。 ああ、そして最後に、コンティニュアスオプティマイザーが凸プログラムを効率的に解くことができると言っているのはなぜですか?凸プログラムに対する任意精度の答えが多項式時間で見つかるのは本当ですか?そうではないので、「効率的」の定義はどの面で私たちのものと異なるのでしょうか? どんな貢献でも大歓迎です!前もって感謝します。