熱帯半環上の多項式のVC次元?
以下のように、この質問、私が興味を持って対 /問題のための熱帯および(\分、+)回路。この問題は、熱帯半環上の多項式のVC次元の上限を表示することになります(以下の定理2を参照)。 BPPBPP\mathbf{BPP}PP\mathbf{P}polypoly\mathrm{poly} (max,+)(max,+)(\max,+)(min,+)(min,+)(\min,+) ましょRRR半環なります。ゼロパターン配列の(f1,…,fm)(f1,…,fm)(f_1,\ldots,f_m)のmmmの多項式R[x1,…,xn]R[x1,…,xn]R[x_1,\ldots,x_n]であるA部分集合S⊆{1,…,m}S⊆{1,…,m}S\subseteq \{1,\ldots,m\}が存在しているx∈Rnx∈Rnx\in R^nとy∈Ry∈Ry\in R全てに対してようi=1,…,mi=1,…,mi=1,\ldots,m、 fi(x)=yfi(x)=yf_i(x)= y IFF i∈Si∈Si\in S。すなわち、これらの多項式は正確のグラフであるfifif_iとi∈Si∈Si\in S点を打つ必要があり(x,y)∈Rn+1(x,y)∈Rn+1(x,y)\in R^{n+1}。(条件f私(x )= yfi(x)=yf_i(x)=yをf_i(x)-y = 0に置き換えることができるため、「ゼロパターン」f私(x )− y= 0fi(x)−y=0f_i(x)-y=0。)Z(m )Z(m)Z(m) =最大dの次数のmmm多項式のシーケンスのゼロパターンの最大可能数。したがって、0 \ leq Z(m)\ leq 2 ^ mです。次数d多項式の Vapnik-Chervonenkis次元は VC(n、d):= \ max \ {m \ colon Z(m)= 2 ^ m \}です。 ddd0 ≤ Z(M )≤ 2m0≤Z(m)≤2m0\leq Z(m)\leq …