タグ付けされた質問 「graph-classes」

4
多項式時間で最大の独立集合を見つけることができる最大クラス?
ISGCIグラフの1100クラス以上のリスト。これらの多くについては、多項式時間で独立集合を決定できるかどうかがわかります。これらはIS-easyクラスと呼ばれることもあります。最大の IS-easyクラスのリストをコンパイルしたいと思います。これらのクラスが一緒になって、この問題の(既知の)扱いやすさの境界を形成します。 ISが簡単な無限クラスに有限の数のグラフを追加するだけで、扱いやすさに影響を与えないため、いくつかの制限があります。クラスを遺伝性のものに制限しましょう(誘導サブグラフの取得、または同様に、除外された誘導サブグラフのセットによって定義される)。さらに、説明が小さいセットXに対してXフリーであるファミリのみを考えてみましょう。そこかもしれません されても可能なように扱いやすいクラス(の無限の昇順チェーン(P,star1,2,k)(P,star1,2,k)(P,\text{star}_{1,2,k})-freeおよび以下のDavid Eppsteinによって説明されているクラス)、しかし、IS-easyであることが実際に証明されているクラスに注意を制限しましょう。 私が知っているものは次のとおりです。 完璧なグラフ フリー(P,star1,2,5)(P,star1,2,5)(P,\text{star}_{1,2,5}) フリー(K3,3−e,P5)(K3,3−e,P5)(K_{3,3}-e, P_5) 共同メイニエル ほぼ二分 椅子なし (、クリケット)無料P5P5P_5 -free(P5,Kn,n)(P5,Kn,n)(P_5,K_{n,n})(固定)nnn -無料(P5,X82,X83)(P5,X82,X83)(P_5, X_{82}, X_{83}) 他のそのような最大クラスは知られていますか? 編集:除外された未成年者によって定義されたクラスを扱うYaroslav Bulatovが尋ねた関連する質問も参照してください。遺伝クラスのグローバルプロパティを参照してください。より一般的な質問については、以前に遺伝クラスについて質問しました。 Jukka Suomelaがコメントで指摘しているように、マイナーな除外されたケースも興味深い(そして興味深い質問をするでしょう)が、これはここでの焦点では​​ありません。 Davidの例を回避するために、Xのすべてのグラフが独立した頂点を持つわけではない、Xフリーグラフとして最大クラスも定義できる必要があります。 以下の回答にあるクラス: りんごなし(StandaŽivný推奨) (、house)-freeP5P5P_5(David Eppsteinにより提案) (爪)フリーK2∪K2∪K_2 \cup(デイビット・エップスタインによって示唆) 2013-10-09を追加しました: Lokshtanov、VatshelleおよびVillangerによる最近の結果は、Martin Vatshelleの回答で言及されており、以前に知られている最大クラスのいくつかに優先します。 特に、フリーはIS-easy subsumes(P 5、cricket)-free、(P 5、K n 、n)-free、(P 5、X 82、X 83)-free、および(P 5、家)-すべてはISで簡単です。P5P5P_5P5P5P_5P5P5P_5Kn,nKn,nK_{n,n}P5P5P_5X82X82X_{82}X83X83X_{83}P5P5P_5 これは、最大5つの頂点を持つ単一の禁止誘導サブグラフによって定義されるすべての遺伝グラフクラスが、ISイージーまたはISイージーでないと明確に分類できることを意味します。 残念ながら、フリーグラフがIS-easyクラスを形成するという証明は、P 6フリーグラフでは機能しないようです。そのため、次のフロンティアは、単一の6頂点グラフで定義されるすべての遺伝グラフクラスを分類することです。P5P5P_5P6P6P_6 私は特にフォームのIS-簡単なクラスに興味ままいくつかのコレクションのためのフリーX無限に多くの同型クラスとグラフの、まだどこYのフリーではありませんIS-簡単に任意のためのY ⊂ X。XXXXXXYYYY⊂XY⊂XY \subset …

2
爪を見つけるために行列乗算を
爪は、。簡単なアルゴリズムは、O (n 4)時間で爪を検出します。これは、で行うことができ、O (N ω + 1)ここで、ωは次のように、高速行列乗算の指数である:によって誘導されるサブグラフ取るNを[ V ]の各頂点のためのV、及びその相補体で三角形を見つけます。K1,3K1,3K_{1,3}O(n4)O(n4)O(n^4)O(nω+1)O(nω+1)O(n^{\omega+1})ωω\omegaN[v]N[v]N[v]vvv o(nω+1)o(nω+1)o(n^{\omega+1})O(nc)O(nc)O(n^c)Ω (N ω)O(nmax(c,2))O(nmax(c,2))O(n^{\max{(c,2)}})Ω(nω)Ω(nω)\Omega(n^\omega) 質問: これに進展はありますか。それとも不可能を示す進歩はありますか? 時間アルゴリズムには他に自然な問題がありますか?O(nω+1)O(nω+1)O(n^{\omega+1}) リマーク: 爪のないグラフの認識ではなく、爪の検出を明示的に求めています。アルゴリズムは通常両方を解決しますが、例外はほとんどありません。 Handbook of Algorithms and Theoretical Computer Scienceで線形時間で見つけることができると主張されていますが、それはタイプミスにすぎません(「効率的なグラフ表現」を参照)。

1
(奇数ホール、反ホール)フリーグラフのリファレンス?
Xフリーグラフは、誘導サブグラフとしてXからのグラフを含まないグラフです。穴は、少なくとも4つの頂点を有するサイクルです。奇数穴は、頂点の数が奇数の穴です。antiholeは、穴の補数です。 (奇数穴、奇数穴)フリーグラフは、まさに完璧なグラフです。これが強い完全グラフ定理です。多項式時間の完全なグラフで最大の独立集合(および最大のクリーク)を見つけることは可能ですが、そのための唯一の既知の方法では、ロバシータシータ数を計算する半正定値プログラムを作成する必要があります。 (hole、antihole)-freeグラフはweakly chordalと呼ばれ、多くの問題(INDEPENDENT SET およびCLIQUEを含む)に対してかなり簡単なクラスを構成します。 (奇数穴、反穴)フリーグラフが研究されているか、記述されているかどうかは誰にもわかりますか? これらのグラフは、関連する変数のグラフがツリーを形成する制約充足問題で非常に自然に発生します。このような問題はかなり簡単なので、Lovászシータを計算せずに、このファミリのグラフの最大の独立集合 クリークを見つける方法があればいいでしょう。 同様に、(ホール、奇数アンチホール)フリーグラフの最大の独立セットを検索する必要があります。Hsien-Chih Changは、これが(奇数ホール、反ホール)フリーのグラフよりも独立セットにとってより興味深いクラスである理由を以下に指摘します。

3
ハミルトニアンサイクルは簡単だがNPはハードTSPのグラフのクラス
ハミルトン閉路問題(HC)は、与えられた無向グラフ中の全ての頂点を通過するサイクルを見つけることにあります。巡回セールスマン問題(TSP)は、与えられたエッジ重み付きグラフのすべての頂点を通過し、サイクルのエッジの重みの合計によって測定された総距離を最小限にサイクルを見出すことにあります。HCはTSPの特殊なケースであり、両方ともNP完全であることが知られています[Garey&Johnson]。(これらの問題の詳細と変形については、上記のリンクを参照してください。) ハミルトニアンサイクル問題が非自明なアルゴリズムを介して多項式時間で解けるが、巡回セールスマン問題はNP困難であるグラフの研究されたクラスはありますか? 非自明では、ハミルトニアンサイクルが存在することが保証され、簡単に見つけることができる完全なグラフのクラス、または一般にHCが常に存在することが保証されるグラフのクラスなどのクラスを除外します。

1
このグラフクラスには名前がありますか?
しきい値グラフを拡張することで定式化されます。がクリークで、が独立集合であるしきい値グラフが与えられた場合、私の拡張は次のとおりです。各頂点は、の頂点が同じになるように新しいクリーク置き換えることができます。近傍。C I V ∈ I K用のV K用のV V(C,I)(C,I)(C,I)CCCIIIv∈Iv∈Iv\in IKvKvK_vKvKvK_vvvv これは研究されるべきだったと思うが、graphclasses.orgでそのようなものを検索するのは難しい。

1
「外界属」グラフのツリー幅は一定ですか?
ましょうによると表す属の表面に埋め込むことができるすべてのグラフのセット全ての頂点は、このようなことが外面に位置しています。たとえば、は外部平面グラフのセットです。のグラフのツリー幅は、関数によって上限を設定できますか?k∈Nk∈Nk\in\mathbb{N}GkGkG_kkkkG0G0G_0GkGkG_kkkk 一定のツリー幅は定数の属をも暗示しないため、もう一方の方向は明らかに成り立ちません:を素なコピーの和集合とします。のツリー幅は一定ですが、その属はです。HnHnH_nnnnK3,3K3,3K_{3,3}HnHnH_nnnn

2
グラフクラスに名前を付ける:クリークと独立セットの素な和集合
LET 、クリークと独立集合の互いに素な和集合であるグラフであり、すなわち G = K N 1 + ¯ K N 2 = K N 1 + I N 2。GGGG=Kn1+Kn2¯¯¯¯¯¯¯¯=Kn1+In2.G=Kn1+Kn2¯=Kn1+In2.G = K_{n_1} + \overline{K_{n_2}} = K_{n_1} + I_{n_2} . そのようなすべてのグラフのグラフクラスは、禁止された誘導サブグラフセットによって特徴付けられ、したがって、クラスターグラフと分割(またはしきい値)グラフの共通部分です。H={2K2,P3}H={2K2,P3}\mathcal{H} = \{2K_2, P_3\} この(非常に単純な)グラフクラスには名前がありますか?ISGCIでグラフクラスを見つけることができませんでし た。トピック(たとえば、「単純なグラフの編集」および「クリーク編集の問題」)について知っている論文では、クラスを名前で参照していません。 このようなグラフの図は次のとおりです。


1
自然なグラフの問題は普遍的に難しいのでしょうか?
自然な完全なグラフの問題はありますか。それは、多項式時間で認識可能なグラフクラスに制限されている場合でもN P完全なままです。縮退のケースを避けるために、私たちが唯一考える密な非同型の数れるグラフクラス、≤ nは -vertexグラフは指数関数的に増大してn個を。N PNP\mathsf{NP}N PNP\mathsf{NP}≤ n個≤ん\leq nんんn ノート: (1)「はい」または「いいえ」の答えはどちらも非常に興味深いでしょう。答えが「はい」の場合、合理的なグラフクラスに制限されている場合でも硬度を維持するため、普遍的にハードに呼び出すことができる自然な 完全なグラフプロパティがあります。答えが「いいえ」の場合、すべての自然なN P完全なグラフプロパティを、いくつかの重要なグラフクラスで簡単に作成できることを意味します。N PNP\mathsf{NP}N PNP\mathsf{NP} (2)プロパティの硬度がクラスに単純にシフトされることを除外するために、多項式時間で認識可能なグラフクラスのみを考慮することが重要です。たとえば、3-COLORABILITYは、3-colorableグラフに制限されている場合、簡単になります。
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.