6
準多項式時間には自然な問題がありますが、多項式時間にはありませんか?
LászlóBabaiは最近、グラフ同型問題が準多項式時間にあることを証明 しました。シカゴ大学での 彼の講演もご覧ください。 ジェレミー・クンによる講演からの コメントGLL post 1、 GLL post 2、 GLL post 3。 場合ラドナーの定理によると、P≠NPP≠NPP \neq NP、その後、NPINPINPI空になっていない、つまりNPNPNPどちらにある問題含まPPPもNPNPNP -completeを。しかし、ラドナーによって構築された言語は人工的なものであり、自然な問題ではありません。P ≠ N Pの 下で条件付きでNPINPINPIすることが知られている自然な問題はありません。ただし、ファクタリング整数やGIなど、一部の問題はN P Iの適切な候補と考えられています。P≠NPP≠NPP \neq NPNPINPINPI NP⊈QP=DTIME(npolylogn)NP⊈QP=DTIME(npolylogn)NP \not\subseteq QP = DTIME(n^{poly\log n}) 準多項式時間アルゴリズムを知っている問題がいくつかありますが、多項式時間アルゴリズムは知られていません。このような問題は、近似アルゴリズムで発生します。有名な例は有向シュタイナー木問題で、 (は頂点の数近似比を達成する準多項式時間近似アルゴリズムがあり。ただし、このような多項式時間アルゴリズムの存在を示すことは未解決の問題です。O(log3n)O(log3n)O(\log^3 n)nnn 私の質問: ではあるがではない自然な問題を知っていますか?QPQPQPPPP