平方根の困難な問題?
平方根の和問題は、2つの配列が与えられると、求められ及び正の整数の和か\ sum_i \ SQRT {a_iを}未満では、等しい、またはそれ以上和より\ sum_i \ SQRT {b_i} 。この問題の複雑さの状態は未解決です。詳細については、この投稿を参照してください。この問題は、計算幾何学、特にユークリッドの最短パスを含む問題で自然に発生し、これらの問題のアルゴリズムを実際のRAMから標準整数RAMに転送する際の大きな障害です。a1,a2,…,ana1,a2,…,ana_1, a_2, \dots, a_nb1,b2,…,bnb1,b2,…,bnb_1, b_2, \dots, b_n∑iai−−√∑iai\sum_i \sqrt{a_i}∑ibi−−√∑ibi\sum_i \sqrt{b_i} 平方根の問題からtoへの多項式時間の縮約がある場合、問題square平方根の困難(Σ√-hard?と省略)を呼び出します。次の問題が平方根の困難であることを証明するのは難しくありません。 4Dユークリッド幾何グラフの最短経路 インスタンス:頂点が\ mathbb {Z} ^ 4の点であり、エッジがユークリッド距離で重み付けされたグラフG =(V、E)。2つの頂点sおよびtG=(V,E)G=(V,E)G=(V,E)Z4Z4\mathbb{Z}^4sssttt 出力:から最短経路sssにtttにおけるGGG。 もちろん、この問題はダイクストラのアルゴリズムを使用して実RAM上で多項式時間で解くことができますが、そのアルゴリズムの各比較には平方根の問題を解く必要があります。削減では、任意の整数が4つの完全な二乗の合計として記述できるという事実を使用します。リダクションの出力は、実際には頂点のサイクルです。2n+22n+22n+2 平方根の和が難しい他の問題は何ですか? 特に、実際のRAMに多項式時間解がある問題に興味があります。1つの可能性については、前の質問を参照してください 。 ロビンが示唆するように、退屈な答えは退屈です。平方根の合計(PSPACEやEXPTIMEなど)を含む複雑度クラスXの場合、すべてのX-hard問題は退屈な平方根の合計困難です。