2
P = PHを超えてP = NPを増幅できますか?
で記述複雑さ、Immermanあり 系譜7.23。次の条件は同等です 。1. P = NP。 2.有限の順序付けられた構造、FO(LFP)= SO以上。 これは、P = NPを(おそらく)より複雑なクラスの同等のステートメントに「増幅」するものと考えることができます。SOは多項式時間階層PHをキャプチャし、FO(LFP)はPをキャプチャするため、P = PHの場合、これはP = NPと考えることができます。 (これの興味深い部分は、P = NPがP = PHを意味するというステートメントです。NPを含むすべてのクラスCCでP = CCがP = NPを意味することは簡単です。Immermanは単に「if P = NP then PH = NP」おそらく、P = NPをPHのオラクル定義とともに使用して、階層全体が崩壊することを帰納的に示すことができるからです) 私の質問は: この方法でP = NPをさらに増幅できますか? 特に、P = NPがP = CC 'を意味する最大の既知のクラスCC'と、P = NPがCC = NPを暗示する最小のクラスCCとは何ですか?これにより、P = NPを同等の質問CC = …