なぜハミルトニアンサイクルはパーマネントとそれほど違うのですか?
多項式f(x1,…,xn)f(x1,…,xn)f(x_1,\ldots,x_n)は、m = poly (n )の場合、多項式g (y 1、… 、y m)の単調な投影であり、代入 πがあります:{ y 1、… 、Y 、M } → { X 1、... 、X nは、0 、1g(y1,…,ym)g(y1,…,ym)g(y_1,\ldots,y_m)mmm(n)(n)(n)π:{y1,…,ym}→{x1,…,xn,0,1}π:{y1,…,ym}→{x1,…,xn,0,1}\pi:\{y_1,\ldots,y_m\}\to\{x_1,\ldots,x_n, 0,1\} ようにf(x1,…,xn)=g(π(y1),…,π(ym))f(x1,…,xn)=g(π(y1),…,π(ym))f(x_1,\ldots,x_n)=g(\pi(y_1),\ldots,\pi(y_m))。つまり、結果の多項式が fと一致するように、 gの各変数yjyjy_jを変数 x iまたは定数 0または 1で置き換えることができます。 gggxixix_i000111fff 永久多項式PERとハミルトニアンサイクル多項式HAMの違い(理由)に興味があります: PERn(x)=∑h∏i=1nxi,h(i) and HAMn(x)=∑h∏i=1nxi,h(i)PERn(x)=∑h∏i=1nxi,h(i) and HAMn(x)=∑h∏i=1nxi,h(i) \mbox{PER}_n(x)=\sum_{h}\prod_{i=1}^{n}x_{i,h(i)}\ \ \ \ \mbox{and} \ \ \ \ \mbox{HAM}_n(x)=\sum_{h}\prod_{i=1}^{n}x_{i,h(i)} ここで、最初の合計はすべての順列hに対するもの です:[であり、2番目はすべての循環順列 hのみです:[ …