タグ付けされた質問 「algebraic-complexity」

2
MulmuleyのGCTプログラム
Ketan Mulmuleyの幾何学的複雑性理論は、P対NP質問のような複雑性理論の未解決の問題を解決するための唯一のもっともらしいプログラムであると時々主張されます。このプログラムについて、有名な複雑性理論家からのいくつかの肯定的な解説がありました。Mulmuleyによると、目的の結果を達成するには長い時間がかかります。一般的な複雑性理論家にとっては、この領域に入ることは容易ではなく、代数幾何学と表現理論を理解するためにかなりの努力が必要です。 GCTがP対NPを安定させることができると考えられるのはなぜですか?そこに到達するために100年以上かかると予想される場合、クレームの価値は何ですか?他の現在のアプローチに対する利点は何ですか?また、今後100年間で上昇する可能性のあるアプローチは何ですか? プログラムの現在の状態は何ですか? プログラムの次の目標は何ですか? プログラムに根本的な批判はありましたか? 私は、代数幾何学と表現理論からの最小限の背景を想定した一般的な複雑性理論家が理解できる答えを好むでしょう。

3
DOES意味するものでは?
私が理解している限り、幾何学的複雑性理論プログラムは、複雑な値の行列のパーマメントが行列式よりも計算がはるかに難しいことを証明することにより、を分離しようとします。VP≠ VNPVP≠VNPVP \neq VNP GCT論文をざっと読んだ後の質問:これはすぐに意味するのでしょうか、それとも単にこの目標に向けた大きな一歩ですか?P≠ NPP≠NPP \neq NP

5
値のテストと関数の計算の複雑さ
一般に、特定の入力で関数が特定の値を取るかどうかをテストする複雑さは、その入力で関数を評価するよりも簡単です。例えば: 非負の整数行列のパーマネントの評価は#P-hardですが、そのようなパーマネントがゼロか非ゼロかはP(2部マッチング)でわかります 実数n個あり1は、。。。、a n、多項式∏ n i = 1(x − a i)が以下の特性を持っている(実際、n個の実数のほとんどのセットはこれらの特性を持っています)。与えられた入力xに対して、この多項式がゼロかどうかをテストするには、Θ (log n )の乗算と比較が必要です(ゼロセットにはnがあるため、Ben-Orの結果による)a1、。。。、na1,...,ana_1,...,a_n∏ni = 1(x − a私)∏i=1n(x−ai)\prod_{i=1}^{n}(x - a_i)nnnバツxxΘ (ログn )Θ(log⁡n)\Theta(\log n)nnn成分)、ただし、上記の多項式の評価には少なくともPaterson-Stockmeyerによるステップ。Ω (n−−√)Ω(n)\Omega(\sqrt{n}) ソートは必要との比較ツリー(も上の手順Ω (N ログN )ベン-ORの結果によって、再び、実際の代数的意思決定ツリー上のステップ)が、テストのリストがソートされている場合にのみ使用し、N - 1つの比較。Ω (n logn )Ω(nlog⁡n)\Omega(n \log n)Ω (n logn )Ω(nlog⁡n)\Omega(n \log n)n − 1n−1n-1 多項式がゼロであるかどうかをテストする(代数的)複雑性が、多項式を評価する複雑性と同等であることを示唆するのに十分な、多項式に関する一般的な条件はありますか? 問題の複雑さを事前に知ることに依存しない条件を探しています。 (明確化10/27/2010)明確にするために、多項式は入力の一部ではありません。つまり、関数の固定ファミリ{ fn}{fn}\{ f_n \}(各入力サイズ(ビット長または入力数)ごとに1つ)が与えられた場合、言語/決定問題の 複雑さを比較したいということです関数{ f …

5
1つの整数が固定されている場合の整数の乗算
ましょ大きさの固定された正の整数であるビット。nAAAnnn 必要に応じて、この整数を前処理できます。 サイズビットの別の正の整数が与えられた場合、乗算複雑さは?m A BBBBmmmABABAB すでにアルゴリズムがあることに注意してください。ここでのクエリは、巧妙なもので\ epsilon = 0を取ることができるかどうかです。 ϵ = 0(max(n,m))1+ϵ(max(n,m))1+ϵ(\max(n,m))^{1+\epsilon}ϵ=0ϵ=0\epsilon=0

2
二乗和証明システム
最近、平方和と呼ばれる証明システムに関するarxivに関する記事をいくつか見ました。 誰かが二乗和証明とは何か、なぜそのような証明が重要/興味深いのかを説明できますか? それらは他の代数的証明システムとどのように関係していますか?彼らはラセールに何らかの二重性がありますか?

2
カテゴリ理論/抽象代数と計算の複雑さを組み合わせた理論はありますか?
カテゴリ理論と抽象代数は、関数を他の関数と組み合わせる方法を扱います。複雑性理論は、関数の計算がいかに難しいかを扱います。これらの研究分野が自然なペアのように見えるので、これらの研究分野を組み合わせた人を見たことがありません。誰もこれをやったことがありますか? やる気を起こさせる例として、モノイドを見てみましょう。操作がモノイドの場合、操作を並列化できることはよく知られています。 たとえば、Haskellでは、加算が次のような整数のモノイドであると簡単に定義できます。 instance Monoid Int where mempty = 0 mappend = (+) ここで、0〜999の合計を計算する場合、次のように順番に実行できます。 foldl1' (+) [0..999] または、並行して行うことができます mconcat [0..999] -- for simplicity of the code, I'm ignoring that this doesn't *actually* run in parallel しかし、このモノイドの並列化は、mappendが一定の時間で実行されるためにのみ意味があります。これが当てはまらない場合はどうなりますか?たとえば、リストは、mappendが一定の時間(またはスペース)で実行されないモノイドです。これが、Haskellにデフォルトの並列mconcat関数がない理由です。最適な実装は、モノイドの複雑さに依存します。 これらの2つのモノイドの違いを説明する便利な方法があるはずです。その後、これらの違いでコードに注釈を付け、モノイドの複雑さに応じて、使用する最適なアルゴリズムをプログラムが自動的に選択できるようにする必要があります。

3
計算におけるリングの形式的表現
代数的方法を使用していくつかの誘導部分グラフを検出することに関する論文を読んでいる間、エッジ理想は可換代数とグラフ理論を結びつける重要なツールであるように思われます。私は代数オブジェクトの計算に精通していないので、このトピックに関する参考文献や本はありますか?チューリングマシンでリングRを表現する際の特殊性、およびRで基本的なプロパティを決定する複雑さ(たとえば、Rの素理想の高さ)

4
次の直接和プロパティを持つ関数が存在することが知られていますか?
この質問は、ブール回路の回路の複雑さのフレームワーク、代数的複雑さの理論のフレームワーク、またはおそらく他の多くの設定で尋ねることができます。引数を数えることで、指数関数的に多くのゲートを必要とするN個の入力にブール関数が存在することを簡単に示すことができます(もちろん、明示的な例はありません)。入力の合計数がMNになるように、M個の異なる入力セットで、ある整数Mに対して同じ関数をM回評価したいとします。つまり、を評価したいだけですは、毎回同じ関数。f(x1,1,...,x1,N),f(x2,1,...,x2,N),...,f(xM,1,...,xM,N)f(x1,1,...,x1,N),f(x2,1,...,x2,N),...,f(xM,1,...,xM,N)f(x_{1,1},...,x_{1,N}), f(x_{2,1},...,x_{2,N}),...,f(x_{M,1},...,x_{M,N})fff 問題は、それが機能のシーケンスが存在することが知られている(各Nに対して1つの機能)は、任意のNのために、任意のMのために、ゲートの総数はの指数関数M倍に少なくとも等しい必要よう、ことN?この結果をすべてのMに保持したいため、単純なカウント引数は機能しないようです。代数的複雑性理論やその他の分野で、この質問の単純な類似物を思い付くことができます。fff

1
熱帯半環上の多項式のVC次元?
以下のように、この質問、私が興味を持って対 /問題のための熱帯および(\分、+)回路。この問題は、熱帯半環上の多項式のVC次元の上限を表示することになります(以下の定理2を参照)。 BPPBPP\mathbf{BPP}PP\mathbf{P}polypoly\mathrm{poly} (max,+)(max,+)(\max,+)(min,+)(min,+)(\min,+) ましょRRR半環なります。ゼロパターン配列の(f1,…,fm)(f1,…,fm)(f_1,\ldots,f_m)のmmmの多項式R[x1,…,xn]R[x1,…,xn]R[x_1,\ldots,x_n]であるA部分集合S⊆{1,…,m}S⊆{1,…,m}S\subseteq \{1,\ldots,m\}が存在しているx∈Rnx∈Rnx\in R^nとy∈Ry∈Ry\in R全てに対してようi=1,…,mi=1,…,mi=1,\ldots,m、 fi(x)=yfi(x)=yf_i(x)= y IFF i∈Si∈Si\in S。すなわち、これらの多項式は正確のグラフであるfifif_iとi∈Si∈Si\in S点を打つ必要があり(x,y)∈Rn+1(x,y)∈Rn+1(x,y)\in R^{n+1}。(条件f私(x )= yfi(x)=yf_i(x)=yをf_i(x)-y = 0に置き換えることができるため、「ゼロパターン」f私(x )− y= 0fi(x)−y=0f_i(x)-y=0。)Z(m )Z(m)Z(m) =最大dの次数のmmm多項式のシーケンスのゼロパターンの最大可能数。したがって、0 \ leq Z(m)\ leq 2 ^ mです。次数d多項式の Vapnik-Chervonenkis次元は VC(n、d):= \ max \ {m \ colon Z(m)= 2 ^ m \}です。 ddd0 ≤ Z(M )≤ 2m0≤Z(m)≤2m0\leq Z(m)\leq …

1
代数的複雑さを学ぶためのコース
代数アルゴリズムと複雑性理論について学びたいです。特に、PITに興味があります。 Sipserの本やArora-Barakの複雑さの教科書のような理論に関する標準的な教科書を読んだ学生向けの講義ノート、書籍、論文、調査のセットはありますか。 参照のセットには、最近の高度な結果が含まれます。

3
AESの硬度保証
多くの公開鍵暗号システムには、何らかの証明可能なセキュリティがあります。たとえば、Rabin暗号システムは、ファクタリングと同じくらい難しいと証明されています。 AESなどの秘密鍵暗号システムには、このような種類の証明可能なセキュリティが存在するのだろうか。そうでない場合、そのような暗号システムを破ることは難しいという証拠は何ですか?(試行錯誤攻撃への抵抗以外) 注: AES操作(AddRoundKey、SubBytes、ShiftRows、MixColumns)に精通しています。AESの難しさは、MixColumns操作に起因するようです。MixColumns操作は、ガロア体(および、代数)の難しい問題から難易度を継承する必要があります。実際、質問は次のように言い換えることができます。「どの難しい代数的問題がAESのセキュリティを保証するのか?」


2
グループアクションの観点からのガウス消去
ガウス消去法により、行列多項式時間の行列式が計算可能になります。そうでなければ指数項の合計である行列式の計算の複雑さの低減は、代替の負の記号の存在によるものです(その欠如により、計算が永続的になりますつまりN P - C#P-hard#P-hard \#P\mbox{-}hardNP-CNP-CNP\mbox{-}C問題) 。これは、行列式に何らかの対称性をもたらします。たとえば、行または列のペアを交換すると、符号が逆になります。おそらく、Valiantによって導入されたホログラフィックアルゴリズムに関連して、ガウスの消去法はグループアクションの観点から説明でき、これが複雑さの軽減の一般的な手法につながることをどこかで読みました。 また、計算上の問題に対する複雑さの削減のほぼすべての原因は、何らかの対称性が存在していると感じています。本当ですか?グループ理論の観点からこれを厳密に形式化できますか? 編集 参照を見つけました。(pg 2、2番目の段落の最終行)。論文を正しく理解していませんでした。質問が論文の誤った理解に基づいている場合は、修正してください。

1
独自に解けるパズル(USP)の容量
Cohn、Kleinberg、Szegedy、Umansは、独創的な論文である行列乗算のグループ理論アルゴリズムで、一意に解決可能なパズル(以下で定義)とUSP容量の概念を紹介しています。彼らは、銅細工とウィノグラードは、自分の画期的な論文でいると主張等差数列を経由して行列の乗算、「暗黙のうちに」USP容量があることを証明3/22/33/22/33/2^{2/3}。この主張は他のいくつかの場所(ここではcstheoryを含む)で繰り返されていますが、説明はどこにもありません。以下は、CoppersmithとWinogradが証明していること、そしてなぜそれが十分ではないかについての私自身の理解です。 それは、USP能力があることは事実である3/22/33/22/33/2^{2/3}?もしそうなら、証拠の参照はありますか? ユニークに解けるパズル 長さの一意に解けるパズル(USP)nnn及び幅kkkのサブセットから成る{1,2,3}k{1,2,3}k\{1,2,3\}^kサイズのnnn、我々は、三点の集合として考える、nnn「個」は(場所に対応ベクトルは111、場所は222、場所は333)であり、次の特性を満たします。すべての111個をnnn行に配置するとします。次に、他のピースを各行に1つずつ配置して、「適合する」ようにするユニークな方法が必要です。 ましょN(k)N(k)N(k)幅のUSPの最大の長さkkk。USP容量がある κ=supkN(k)1/k.κ=supkN(k)1/k. \kappa = \sup_k N(k)^{1/k}. USPでは、片のそれぞれが一意である必要がある-ない2行は、シンボル含まないことをその手段c∈{1,2,3}c∈{1,2,3}c \in \{1,2,3\}正確に同じ場所です。これは、(短い引数の後) などκ≤3/22/3N(k)≤∑a+b+c=kmin{(ka),(kb),(kc)}≤(k+22)(kk/3),N(k)≤∑a+b+c=kmin{(ka),(kb),(kc)}≤(k+22)(kk/3), N(k) \leq \sum_{a+b+c=k} \min \left\{ \binom{k}{a}, \binom{k}{b}, \binom{k}{c} \right\} \leq \binom{k+2}{2} \binom{k}{k/3}, κ≤3/22/3κ≤3/22/3\kappa \leq 3/2^{2/3}。 例(長さおよび幅 USP ): 長さおよび幅例ではなく、および -ピースは2つの異なる方法で配置できます: 4 1111 2131 1213 2233 3 3 2 3 12344444411112131121322331111213112132233\begin{align*} 1111 \\ 2131 \\ 1213 \\ …

1
決定要因を永続的に表現する
TCSの大きな問題の1つは、パーマネントを決定要因として表現する問題です。私はアグラワルの論文「Determinant Versus Permanent」を読んでいたが、ある段落で彼は逆の問題は簡単だと主張した。 マトリックスの行列ことを確認することは容易である関連する行列の永久として表すことができるX そのエントリは0、1、またはxはiは、J sおよびサイズであるO (nは)(エントリを設定しますXのようDET X = DET Xと偶数サイクルを有するすべての順列に対応する商品がゼロです)。XXXXˆXˆXˆxi,jxi,jx_{i,j}O(n)O(n)O(n)XˆXˆXˆXXX まず、0、1、および変数だけでは負の項が欠落するため十分ではないと思います。しかし、我々は許さ-1としても- xは、私は、j個の大きさの成長がリニア行うことができる理由だけでなく、変数を、私は表示されません。誰かが私に構造を説明してもらえますか?xi,jxi,jx_{i,j}−xi,j−xi,j-x_{i,j}

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.