Ketan Mulmuleyの幾何学的複雑性理論は、P対NP質問のような複雑性理論の未解決の問題を解決するための唯一のもっともらしいプログラムであると時々主張されます。このプログラムについて、有名な複雑性理論家からのいくつかの肯定的な解説がありました。Mulmuleyによると、目的の結果を達成するには長い時間がかかります。一般的な複雑性理論家にとっては、この領域に入ることは容易ではなく、代数幾何学と表現理論を理解するためにかなりの努力が必要です。
GCTがP対NPを安定させることができると考えられるのはなぜですか?そこに到達するために100年以上かかると予想される場合、クレームの価値は何ですか?他の現在のアプローチに対する利点は何ですか?また、今後100年間で上昇する可能性のあるアプローチは何ですか?
プログラムの現在の状態は何ですか?
プログラムの次の目標は何ですか?
プログラムに根本的な批判はありましたか?
私は、代数幾何学と表現理論からの最小限の背景を想定した一般的な複雑性理論家が理解できる答えを好むでしょう。