PからNP-hardおよび再び戻るパラメータ化された複雑さ
私は番号によってパラメータ問題の例を探していますK ∈ Nk∈Nk \in \mathbb{N}問題の硬さがあり、非単調にkkk。例示のために(私の経験で)ほとんどの問題は、単一の相転移を有するkkk -SATから単相転移有するK ∈ { 1 、2 }k∈{1,2}k \in \{1,2\}ために(問題はPである)K ≥ 3k≥3k \ge 3の問題はNP-あります(コンプリート)。私は、kが増加するにつれて両方向(簡単なものからハードなもの、そしてその逆)に相転移がある問題に興味があります。kkk 私の質問は、計算の複雑さの難易度ジャンプで尋ねられた質問にいくらか似ており、実際、そこにある回答のいくつかは私の質問に関連しています。 私が知っている例: kkk平面グラフの彩色性:Pでは、場合を除き、k = 3k=3k=3NP完全です。 kkk端子を備えたシュタイナーツリー:k = 2k=2k=2(最短sss - tttパスに崩壊する)およびk = nk=nk=n(MSTに崩壊する)のPであるが、NP-hard "in between"。これらの相転移がシャープかどうかはわかりません(たとえば、場合はP k0k0k_0、場合はNP-hard k0+ 1k0+1k_0+1)。また、他の例とは異なり、の遷移はkkk入力インスタンスのサイズに依存します。 平面式モジュロの満足割り当てをカウントnnn:Pで場合nnnメルセンヌある素数数n = 2k− 1n=2k−1n=2^k-1のための、および#のP-完全最も/(?)の他のすべての値nnn(でアーロン・スターリングからこのスレッド) 。相転移がたくさん! 誘導されたサブグラフの検出:問題は、整数ではなくグラフによってパラメーター化されます。そこグラフ存在H1⊆ H2⊆ H3H1⊆H2⊆H3H_1 \subseteq H_2 \subseteq H_3(ここで、⊆⊆\subseteqかどうかを決定れる、サブグラフ関係の特定の種類を示す)H私⊆ GHi⊆GH_i \subseteq G所与のグラフのGGGためPにあるiは∈ { …