(入力のサイズに関連して)指数関数的に多くのものをカウントすることを伴ういくつかのカウント問題がありますが、驚くべき多項式時間の正確な決定論的アルゴリズムを持っています。例は次のとおりです。
- ホログラフィックアルゴリズムの動作の基礎となる、平面グラフ(FKTアルゴリズム)での完全一致のカウント。
- グラフ内のスパニングツリーのカウント(キルヒホッフの行列ツリーの定理による)。
これらの例の両方で重要なステップは、特定のマトリックスの行列式を計算するためにカウントの問題を減らすことです。行列式自体はもちろん、指数関数的に多くのものの合計ですが、驚くべきことに多項式時間で計算できます。
私の質問は、行列式の計算に減らない問題を数えるために知られている「驚くほど効率的な」正確で決定論的なアルゴリズムはありますか?