1
Planar 1-in-3 SATの平面性条件
Planar 3SATはNP完全です。平面3SATインスタンスは、次のルールを使用して作成されたグラフが平面である3SATインスタンスです。 すべてのおよび頂点を追加しバツ私xix_iバツ私¯xi¯\bar{x_i} すべての節頂点を追加しCjCjC_j ペアごとにエッジを追加します(x私、x私¯)(バツ私、バツ私¯)(x_i,\bar{x_i}) 頂点(または)から、それを含む節を表す各頂点にエッジを追加しますバツ私バツ私x_iバツ私¯バツ私¯\bar{x_i} 2つの連続する変数間にエッジを追加します (x1、x2)、(x2、x3)、。。。、(xn、x1)(バツ1、バツ2)、(バツ2、バツ3)、。。。、(バツn、バツ1)(x_1,x_2),(x_2,x_3),...,(x_n,x_1) 特に、ルール5は、句を2つの異なる領域に分割する「バックボーン」を構築します。 Planar 1-in-3 SATもNP完全です。 しかし、平面1-in-3 SATの場合、平面条件はPlanar 3SATと同じ方法で定義されますか?特に、変数をリンクするバックボーンがあると仮定でき ますか? (x私、xi + 1)(バツ私、バツ私+1)(x_i,x_{i+1})