1
Adams-BashforthアルゴリズムよりもAdams-Moultonを使用する相対的な利点は何ですか?
私は、2つの空間次元と時間で2つの結合PDEのシステムを計算的に解いています。関数の評価には費用がかかるため、マルチステップメソッド(Runge-Kutta 4-5を使用して初期化)を使用したいと思います。 5つの以前の関数評価を使用するAdams-Bashforthメソッドは、グローバルエラー(これは、以下で参照するWikipedia記事場合です)で、ステップごとに1つの関数評価(PDEごと)が必要です。O (h5)O(h5)O(h^5)s = 5s=5s=5 一方、Adams-Moulton法では、ステップごとに2つの関数評価が必要です。1つは予測ステップ用で、もう1つは修正ステップ用です。繰り返しますが、5つの関数評価が使用される場合、グローバルエラーはです。(ウィキペディアの記事では)O (h5)O(h5)O(h^5)s = 4s=4s=4 では、Adams-BashforthよりAdams-Moultonを使用する理由は何ですか?関数の評価回数が2倍になると、同じ次数のエラーが発生します。直観的には、予測子修正子メソッドが好ましいはずですが、誰かがこれを定量的に説明できますか? 参照:http : //en.wikipedia.org/wiki/Linear_multistep_method#Adams.E2.80.93Bashforth_methods