私は自分でPDEを数値的に解くことについて学ぼうとしています。
FDMはPDEの多くの数値的手法の基礎であると聞いたので、私はしばらくの間、差分法(FDM)から始めました。これまでのところ、FDMの基本的な理解があり、ライブラリとインターネットで見つけた資料を使用して、通常の地域にある簡単なPDEのコードを書くことができましたが、奇妙なことに、これらの資料はほとんど話せませんこのような不規則な、湾曲した、奇妙な境界の処理について。
さらに、曲線の境界に対処する簡単な方法を見たことはありません。たとえば、これまで見てきた最も詳細な議論(主にp71の3.4およびp199の6.4 )を含む書籍「偏微分方程式の数値解法-はじめに(Morton K.、Mayers D)」は、私にとって本当に面倒でイライラする外挿。
それで、タイトルが尋ねたように、湾曲した境界に関して、FDMを使用するとき、通常人々はそれをどのように扱いますか?言い換えれば、最も一般的な治療法は何ですか?それともPDEのタイプに依存しますか?
(少なくとも比較的)エレガントで高精度の曲線境界に対処する方法はありますか?または、それは避けられない痛みですか?
私も尋ねたいのですが、人々は実際に湾曲した境界に実際にFDMを使用していますか?そうでない場合、一般的な方法は何ですか?
任意の助けをいただければ幸いです。