これらの振動は何ですか?
ガウス関数とローレンツ関数の中間の関数数値で定義しています。ガウス分布よりもはるかに遅く減衰しますが、単純な逆指数よりも高速です。g(x)g(x)g(x) フーリエ変換を大きなに対して計算する必要があります。への関数呼び出しは計算コストが高いため、補間を定義します-これをと呼び -いくつかの巨大な範囲、、それを私の積分に使用します。T G (X )G (X )G INT(X )X - 40 < X < 40f(t)≡F[g(x)](t)f(t)≡F[g(x)](t)f(t)\equiv \mathcal{F}[g(x)](t)tttg(x)g(x)g(x)g(x)g(x)g(x)gint(x )gint(x)g_{\text{int}}(x)バツxx− 40 < x < 40−40<x<40-40<x<40 f(t )= ∫∞- ∞cos(t x )g(x )dバツ⟶≈∫L− Lcos(t x )gint(x )dバツf(t)=∫−∞∞cos(tx)g(x)dx⟶≈∫−LLcos(tx)gint(x)dxf(t)=\int_{-\infty}^{\infty}\cos (tx)g(x)\,dx\,\,\underset{\approx}{\longrightarrow}\,\,\,\int_{-L}^{L}\cos(tx)g_{\text{int}}(x)\,dx しかし、フーリエ変換の近似を計算すると、最初は予期していなかった奇妙な振動が発生します。 上の図で示したように、振動の「周期」は約15.7です。私の最初の推測は、これは積分の相殺の交互の性質のアーティファクトであるかもしれないが、それは15.7の観察された「期間」を説明しないでしょう。 T推測= 2 πL≈ 0.157 ...Tguess=2πL≈0.157…T_{\text{guess}}=\frac{2\pi}{L}\approx 0.157\ldots これは、私が観察するものとはまったく異なる100の因数です(はい、積分と水平軸を正しく定義したことを確認しました)。これはどうやってできるの? 編集#1:補間の詳細 私は、Mathematicaの組み込みInterpolationで補間しています。これは、3次曲線で連続するポイント間を補間します(したがって、各ポイントで2導関数まで定義されます)。具体的には、関数を範囲でステップで補間しています。 G(X)-40<X<40DX=40 / 100=0.4ndnd^{\text{nd}}g(x )g(x)g(x)− …