3
有限VC次元でのヒッティングセットのパラメーター化された複雑さ
私は、d次元のヒッティングセット問題と呼ばれるもののパラメーター化された複雑さに興味があります。正の整数k、XにはRのすべての範囲にヒットするサイズkのサブセットが含まれていますか?問題のパラメーター化されたバージョンは、kによってパラメーター化されます。 dのどの値に対してd次元ヒッティングセット問題 FPTで? W [1]で? W [1] -hard? W [2] -hard? 私が知っていることは、次のように要約することができます: 1次元ヒッティングセットはPにあり、したがってFPTにあります。Sの次元が1である場合、サイズ2のヒットセットがあるか、Sの入射行列が完全に均衡していることを示すことは難しくありません。どちらの場合でも、多項式時間で最小ヒットセットを見つけることができます。 4次元ヒッティングセットはW [1] -hardです。Dom、Fellows、およびRosamond [PDF]は、軸平行線でR ^ 2の軸平行長方形を突き刺す問題のW [1]硬度を証明しました。これは、VC次元4の範囲空間でヒッティングセットとして定式化できます。 dに制限がない場合、W [2] -completeおよびNP-completeである標準的なHitting Set問題があります。 LangermanとMorin [citeseer link]は、制限された次元のSet CoverにFPTアルゴリズムを提供しますが、それらの有界次元モデルは有界VC次元で定義されたモデルと同じではありません。彼らのモデルには、例えば、ポイントで半空間をヒットする問題は含まれていないようですが、モデルのプロトタイプ問題は、超平面をポイントでヒットすることと同等です。