無限半環上のAdlemanの定理?
Adlemanは1978年にを示しました。n個の変数のブール関数がサイズMの確率論的なブール回路で計算できる場合、fは決定論でも計算できますMおよびnのサイズ多項式のブール回路。実際には、サイズはO (n M )です。 FBPP⊆P/polyBPP⊆P/poly\mathrm{BPP}\subseteq \mathrm{P/poly}fffnnnMMMfffMMMnnnO(nM)O(nM)O(nM) 一般的な質問:上の他のどのようなsemirings(ブール値よりも)ありませんBPP⊆P/polyBPP⊆P/poly\mathrm{BPP}\subseteq \mathrm{P/poly}ホールド? もう少し具体的には、確率回路CC\mathsf{C} 半環上(S,+,⋅,0,1)(S,+,⋅,0,1)(S,+,\cdot,0,1)その「添加」を使用(+)(+)(+)『と「乗算』(⋅ )(⋅)(\cdot)オペレーションゲートとして。入力は入力変数でありバツ1、… 、xnバツ1、…、バツnx_1,\ldots,x_nおよび値取る追加のランダム変数のおそらくいくつかの数の000と111 確率で独立して1/21/21/2、ここで000 および111は、それぞれ半環の加法および乗法の恒等式です。そのような回路CC\mathsf{C} 計算与えられた関数f:Sn→ Sf:Sn→Sf:S^n\to Sのための場合、すべてのx∈Snx∈Snx\in S^n、Pr[C(x)=f(x)]≥2/3Pr[C(x)=f(x)]≥2/3\mathrm{Pr}[\mathsf{C}(x)=f(x)]\geq 2/3。 m個の変数 の投票関数 Maj(y1,…,ym)Maj(y1,…,ym)\mathrm{Maj}(y_1,\ldots,y_m)は、要素yがy 1、… 、y mのうちm / 2回以上出現し、未定義の場合、値がyである部分関数です。、そのような要素yが存在しない場合。チェルノフとユニオンの境界の簡単な適用は次をもたらします。mmmyyyyyym/2m/2m/2y1,…,ymy1,…,ymy_1,\ldots,y_myyy 大部分のトリック:確率回路場合関数計算F :S N → Sの有限集合にX ⊆ S Nは、あるM = O (ログ| X |)実現C 1、... 、CとMのCようにf (x )= M a j(C 1(x )、…CC\mathsf{C}f:Sn→Sf:Sn→Sf:S^n\to SX⊆SnX⊆SnX\subseteq …