潮汐の加速と減速の最終的な結果
ですから、月が地球からの潮汐加速を経験しているのを知っています。そして、私が読んだことから、太陽が海を沸騰させて両方を最初に飲み込むという事実がなければ、月は約500億年後に静止します。 潮汐の加速が衛星を逃がすことができるかどうか私は興味がありました、そして短い答えはそうです、それは可能です。それは正確ですか?もしそうなら、どの要因がそれに追加されますか? 惑星の回転が速いほど、潮汐がさらに先に進み、完全にロックされる前に失うエネルギーが増えます。非常に密接に関連しており、衛星が遠くに移動すると軌道が遅くなり、潮汐がさらに先に進み、脱出に必要なエネルギーが少なくなります。これは明らかだと思われます。衛星が遠くにあるにも関わらず、惑星の回転が速いほど、脱出する可能性が高くなります。 より流動的な惑星はより強い潮を経験し、それは再びより速く減速しますが、間違いなくより速く衛星を加速します。水よりも粘性の高い流体は、より弱い潮を経験しますが、私はそれらがはるかに先だと思います。流動性が高いほど確実に効果が上がると思いますが、最初の点ほど明白ではないようです。 大きな惑星では、潮汐加速による軌道の減速は少なくなりますが、脱出する力は強くなります。衛星が大きくなると、潮が強くなり潮汐力が大きくなりますが、加速するにはさらに力が必要になり、惑星の速度が低下します。どちらがより強力な効果を持つのか本当にわかりません... それが問題1です。惑星がタイドロックされる前に、潮汐加速が衛星を宇宙に投げ込むことは本当に可能ですか?そうであれば、オブジェクトのサイズがそれに影響を及ぼしますか、それとも単に流動性と相対期間に影響しますか? それから、潮汐減速と惑星への衝突について疑問に思いました。レトログラードを周回する衛星が減速を停止することは決してないので、すべてが最終的に引き裂かれ、惑星に衝突することは明らかです。非遡及的衛星の場合、私が読んだ記事は、それらすべてが同じ運命をたどるであろうことを暗示していました...これは、惑星の回転が常に衛星の落下軌道よりもゆっくりと加速することを意味します。本当?そうでない場合は、惑星の回転が追いつく場合があり、それらは再び潮汐的にロックされることになるでしょう。 つまり、問題2:後退しないすべての潮汐減速衛星は、最終的に惑星に衝突するのでしょうか、それとも、適切な開始条件を前提として、惑星が追いつくことが可能ですか? 編集:これについてこれ以上の情報は本当に見つかりませんでした。答えを知っている関連方程式に詳しい人はいますか?