1
観測されたイベントと期待されたイベントを比較する方法は?
4つの可能なイベントの頻度の1つのサンプルがあるとします。 Event1 - 5 E2 - 1 E3 - 0 E4 - 12 そして、私は自分のイベントの発生が予想される確率を持っています: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 4つのイベントの観測頻度の合計(18)を使用して、イベントの予想頻度を計算できますか? expectedE1 - 18 * 0.2 = 3.6 expectedE2 - 18 * 0.1 = 1.8 expectedE1 - 18 * 0.1 = 1.8 expectedE1 - …
9
r
statistical-significance
chi-squared
multivariate-analysis
exponential
joint-distribution
statistical-significance
self-study
standard-deviation
probability
normal-distribution
spss
interpretation
assumptions
cox-model
reporting
cox-model
statistical-significance
reliability
method-comparison
classification
boosting
ensemble
adaboost
confidence-interval
cross-validation
prediction
prediction-interval
regression
machine-learning
svm
regularization
regression
sampling
survey
probit
matlab
feature-selection
information-theory
mutual-information
time-series
forecasting
simulation
classification
boosting
ensemble
adaboost
normal-distribution
multivariate-analysis
covariance
gini
clustering
text-mining
distance-functions
information-retrieval
similarities
regression
logistic
stata
group-differences
r
anova
confidence-interval
repeated-measures
r
logistic
lme4-nlme
inference
fiducial
kalman-filter
classification
discriminant-analysis
linear-algebra
computing
statistical-significance
time-series
panel-data
missing-data
uncertainty
probability
multivariate-analysis
r
classification
spss
k-means
discriminant-analysis
poisson-distribution
average
r
random-forest
importance
probability
conditional-probability
distributions
standard-deviation
time-series
machine-learning
online
forecasting
r
pca
dataset
data-visualization
bayes
distributions
mathematical-statistics
degrees-of-freedom