近似
概算するための最良の方法は何だ与えられた二つの整数のためのmは、nはあなたが平均知っているときμ、分散σ 2、歪度γ 1と過剰尖度γ 2離散分布のXを、そしてそれがあります明確な形状の(非ゼロ)測定からγ 1及びγ 2正規近似が適切でないと?Pr[n≤X≤m]Pr[n≤X≤m]Pr[n \leq X \leq m]m,nm,nm,nμμ\muσ2σ2\sigma^2γ1γ1\gamma_1γ2γ2\gamma_2XXXγ1γ1\gamma_1γ2γ2\gamma_2 通常、私は整数補正付きの通常の近似を使用します... Pr[(n−½)≤X≤(m+½)]=Pr[(n−½)−μσ≤Z≤(m+½)−μσ]=Φ((m+½)−μσ)−Φ((n−½)−μσ)Pr[(n−½)≤X≤(m+½)]=Pr[(n−½)−μσ≤Z≤(m+½)−μσ]=Φ((m+½)−μσ)−Φ((n−½)−μσ)Pr[(n - \text{½})\leq X \leq (m + \text{½})] = Pr[\frac{(n - \text{½})-\mu}{\sigma}\leq Z \leq \frac{(m + \text{½})-\mu}{\sigma}] = \Phi(\frac{(m + \text{½})-\mu}{\sigma}) - \Phi(\frac{(n - \text{½})-\mu}{\sigma}) ...歪度と過剰な尖度が0に近い(近い)場合、ただし、ここではそうではありません。 私は、異なる値を有する異なる離散分布に対して複数の近似を実行する必要が及びγ 2。用途があること手順確立があれば調べることに興味がある私はγ 1およびγ 2を正規近似よりも良い近似を選択するためには。γ1γ1\gamma_1γ2γ2\gamma_2γ1γ1\gamma_1γ2γ2\gamma_2