タグ付けされた質問 「regression-coefficients」

回帰モデルのパラメーター。最も一般的には、従属変数の予測値を取得するために独立変数に乗算される値。


1
ポアソン回帰で係数を解釈する方法は?
ポアソン回帰の主な効果(ダミーコード化された因子の係数)をどのように解釈できますか? 次の例を想定します。 treatment <- factor(rep(c(1, 2), c(43, 41)), levels = c(1, 2), labels = c("placebo", "treated")) improved <- factor(rep(c(1, 2, 3, 1, 2, 3), c(29, 7, 7, 13, 7, 21)), levels = c(1, 2, 3), labels = c("none", "some", "marked")) numberofdrugs <- rpois(84, 10) + 1 healthvalue <- rpois(84, 5) …

3
対数変換された予測子および/または応答の解釈
従属変数のみ、従属変数と独立変数の両方、または独立変数のみが対数変換されるかどうかの解釈に違いがあるのか​​と思います。 の場合を考えます log(DV) = Intercept + B1*IV + Error IVはパーセントの増加として解釈できますが、 log(DV) = Intercept + B1*log(IV) + Error または私が持っているとき DV = Intercept + B1*log(IV) + Error ?
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

3
単純な線形回帰における回帰係数の分散を導き出す
単純な線形回帰では、。ここで、です。推定量を導き出しました: ここでおよびはおよびサンプル平均です。y=β0+β1x+uy=β0+β1x+uy = \beta_0 + \beta_1 x + uu∼iidN(0,σ2)u∼iidN(0,σ2)u \sim iid\;\mathcal N(0,\sigma^2)β1^=∑i(xi−x¯)(yi−y¯)∑i(xi−x¯)2 ,β1^=∑i(xi−x¯)(yi−y¯)∑i(xi−x¯)2 , \hat{\beta_1} = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2}\ , x¯x¯\bar{x}y¯y¯\bar{y}xxxyyy ここで、\ hat \ beta_1の分散を見つけたいと思いますβ^1β^1\hat\beta_1。次のようなものを導き出しました: Var(β1^)=σ2(1−1n)∑i(xi−x¯)2 .Var(β1^)=σ2(1−1n)∑i(xi−x¯)2 . \text{Var}(\hat{\beta_1}) = \frac{\sigma^2(1 - \frac{1}{n})}{\sum_i (x_i - \bar{x})^2}\ . 派生は次のとおりです。 Var(β1^)=Var(∑i(xi−x¯)(yi−y¯)∑i(xi−x¯)2)=1(∑i(xi−x¯)2)2Var(∑i(xi−x¯)(β0+β1xi+ui−1n∑j(β0+β1xj+uj)))=1(∑i(xi−x¯)2)2Var(β1∑i(xi−x¯)2+∑i(xi−x¯)(ui−∑jujn))=1(∑i(xi−x¯)2)2Var(∑i(xi−x¯)(ui−∑jujn))=1(∑i(xi−x¯)2)2×E⎡⎣⎢⎢⎢⎢⎢⎢⎛⎝⎜⎜⎜⎜⎜∑i(xi−x¯)(ui−∑jujn)−E[∑i(xi−x¯)(ui−∑jujn)]=0⎞⎠⎟⎟⎟⎟⎟2⎤⎦⎥⎥⎥⎥⎥⎥=1(∑i(xi−x¯)2)2E⎡⎣(∑i(xi−x¯)(ui−∑jujn))2⎤⎦=1(∑i(xi−x¯)2)2E[∑i(xi−x¯)2(ui−∑jujn)2] , since ui 's are …

4
多項式モデルの近似から係数を解釈する方法は?
私が持っているいくつかのデータに適合する二次多項式を作成しようとしています。この適合をプロットするとしましょうggplot(): ggplot(data, aes(foo, bar)) + geom_point() + geom_smooth(method="lm", formula=y~poly(x, 2)) 私は得る: したがって、2次近似は非常にうまく機能します。Rで計算します。 summary(lm(data$bar ~ poly(data$foo, 2))) そして私は得る: lm(formula = data$bar ~ poly(data$foo, 2)) # ... # Coefficients: # Estimate Std. Error t value Pr(>|t|) # (Intercept) 3.268162 0.008282 394.623 <2e-16 *** # poly(data$foo, 2)1 -0.122391 0.096225 -1.272 0.206 # poly(data$foo, …

2
重回帰または偏相関係数?そして2つの関係
この質問が理にかなっているかさえわかりませんが、重回帰と偏相関の違いは何ですか(相関と回帰の明らかな違いは別として、私が目指しているものではありません)? 次のことを理解したいと 思います。2つの独立変数(、)と1つの従属変数()があります。現在、個別の独立変数は従属変数と相関していません。ただし、が減少すると、所定の減少します。だから私は重回帰または偏相関によってそれを分析しますか?バツ1x1x_1バツ2x2x_2yyyバツ1x1x_1 yyyバツ2x2x_2 うまくいけば私の質問を改善するために編集します。 私は重回帰と偏相関の違いを理解しようとしています。ときに、与えられたために減少減少、すなわちの複合効果によるものでおよびに(重回帰)またはそれが原因の影響の除去である(部分的な相関)を?yyyバツ1x1x_1バツ2x2x_2バツ1x1x_1バツ2x2x_2yyyバツ1x1x_1

3
R:データセットにNaNがないにもかかわらず、「Forest function call」エラーでNaN / Infをスローするランダムフォレスト[非公開]
キャレットを使用して、データセットに対してクロス検証されたランダムフォレストを実行しています。Y変数は要因です。データセットにNaN、Inf、またはNAはありません。ただし、ランダムフォレストを実行すると、 Error in randomForest.default(m, y, ...) : NA/NaN/Inf in foreign function call (arg 1) In addition: There were 28 warnings (use warnings() to see them) Warning messages: 1: In data.matrix(x) : NAs introduced by coercion 2: In data.matrix(x) : NAs introduced by coercion 3: In data.matrix(x) : NAs introduced by …

1
lmerモデルからの効果の再現性の計算
混合効果モデリングによる測定の再現性(別名信頼性、別名クラス内相関)の計算方法を説明するこの論文に出会ったばかりです。Rコードは次のようになります。 #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = attr(vc$id,'stddev')[1]^2 #compute the unadjusted repeatability R = intercept_var/(intercept_var+residual_var) #compute n0, the repeatability adjustment n = as.data.frame(table(my_data$unit)) k = nrow(n) N = sum(n$Freq) n0 = (N-(sum(n$Freq^2)/N))/(k-1) #compute the adjusted repeatability Rn = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

1
自由度は非整数の数値にできますか?
GAMを使用すると、残留DFは(コードの最終行)になります。どういう意味ですか?GAMの例を超えて、一般に、自由度の数を整数以外の数にすることはできますか?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 1.2445 6.0516 (Dispersion Parameter for gaussian family taken to be 6.6717) Null Deviance: 1126.047 on 31 degrees of freedom Residual Deviance: 177.4662 on 26.6 degrees of …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

3
回帰係数を計算するとき、説明変数の順序は重要ですか?
最初は順序は関係ないと思っていましたが、重回帰係数を計算するためのグラムシュミットの直交化プロセスについて読みましたが、今は考え直しています。 gram-schmidtプロセスによれば、説明変数が他の変数の中で後でインデックス付けされると、その前の変数の残差ベクトルが減算されるため、その残差ベクトルは小さくなります。その結果、説明変数の回帰係数も小さくなります。 それが本当である場合、問題の変数の残差ベクトルは、より少ない残差ベクトルが減算されるため、より早くインデックス付けされた場合、より大きくなります。これは、回帰係数も大きくなることを意味します。 わかりましたので、質問を明確にするように求められました。だから私は最初に私を混乱させたテキストからスクリーンショットを投稿しました。はい、ここに行きます。 私の理解では、回帰係数を計算するには少なくとも 2つのオプションがあります。最初のオプションは、下のスクリーンショットで(3.6)と示されています。 次に、2番目のオプションを示します(複数のスクリーンショットを使用する必要がありました)。 私が何かを誤解していない限り(これは間違いなく可能です)、2番目のオプションでは順序が重要なようです。最初のオプションでは重要ですか?なぜですか?または、私の参照フレームがめちゃくちゃになっていて、これが有効な質問でさえないのですか?また、これは何らかの形で平方Iの合計とタイプIIの平方和に関連していますか? 事前に感謝します、私はとても混乱しています!

1
共分散行列を使用して、重回帰の係数を見つける方法はありますか?
単純な線形回帰の場合、回帰係数は分散共分散行列CCCからC d 、eによって 直接計算できます。Cd,eCe,eCd,eCe,e C_{d, e}\over C_{e,e} ここで、dddは従属変数のインデックス、eeeは説明変数のインデックスです。 共分散行列しかない場合、複数の説明変数を持つモデルの係数を計算できますか? ETAは、2つの説明変数については、それが現れる と同様のためのβ2。これを3つ以上の変数に拡張する方法がすぐにわかりません。β1=Cov(y,x1)var(x2)−Cov(y,x2)Cov(x1,x2)var(x1)var(x2)−Cov(x1,x2)2β1=Cov(y,x1)var(x2)−Cov(y,x2)Cov(x1,x2)var(x1)var(x2)−Cov(x1,x2)2\beta_1 = \frac{Cov(y,x_1)var(x_2) - Cov(y,x_2)Cov(x_1,x_2)}{var(x_1)var(x_2) - Cov(x_1,x_2)^2} β2β2\beta_2

3
重回帰において「その他はすべて等しい」とはどういう意味ですか?
重回帰を行って、変数の変化について変数の平均変化を調べて、他のすべての変数を一定に保持している場合、他の変数を一定に保持しているのはどの値ですか?彼らの平均?ゼロ?値はありますか?yyyxバツx 私はそれが価値があると思う傾向があります。明確化を探しています。誰かが証拠を持っているなら、それも素晴らしいでしょう。

2
Rのブートストラップは実際にどのように機能しますか?
私はRのブートパッケージを調査してきましたが、その使用方法に関する多くの優れた入門書を見つけましたが、「舞台裏」で何が起こっているかを正確に説明するものはまだ見つけていません。たとえば、この例では、ガイドは標準の回帰係数をブートストラップ回帰の開始点として使用する方法を示していますが、ブートストラップ回帰係数を導出するためにブートストラップ手順が実際に何をしているのかについては説明しません。何らかの反復プロセスが行われているように見えますが、何が起こっているのかを正確に把握できないようです。

1
cloglogロジスティック回帰の推定値の解釈
cloglogリンクを使用してロジスティック回帰からの推定値を解釈する方法について誰かにアドバイスしてもらえますか? 私は次のモデルを装着しましたlme4: glm(cbind(dead, live) ~ time + factor(temp) * biomass, data=mussel, family=binomial(link=cloglog)) たとえば、時間の推定値は0.015です。単位時間あたりの死亡率にexp(0.015)= 1.015113(単位時間あたり〜1.5%増加)を掛けると言うのは正しいですか? 言い換えれば、loglogロジスティック回帰の場合と同様に、loglogで得られた推定値はlogオッズで表されますか?

4
重回帰における予測変数の重要性:部分対標準化係数
部分モデルと線形モデルの係数との正確な関係と、因子の重要性と影響を説明するためにどちらか一方のみを使用すべきかどうか疑問に思っています。R2R2R^2 私が知る限りsummary、係数の推定値を取得しanova、各因子の平方和を取得します-1つの因子の平方和を平方和と残差の合計で割った割合は部分(次のコードはにあります)。R2R2R^2R library(car) mod<-lm(education~income+young+urban,data=Anscombe) summary(mod) Call: lm(formula = education ~ income + young + urban, data = Anscombe) Residuals: Min 1Q Median 3Q Max -60.240 -15.738 -1.156 15.883 51.380 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -2.868e+02 6.492e+01 -4.418 5.82e-05 *** income 8.065e-02 9.299e-03 8.674 2.56e-11 *** young 8.173e-01 …

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.