2
UMVUE
ましょう密度からのランダムサンプルである(X1,X2,…,Xn)(X1,X2,…,Xn)(X_1,X_2,\ldots,X_n)fθ(x)=θxθ−110<x<1,θ>0fθ(x)=θxθ−110<x<1,θ>0f_{\theta}(x)=\theta x^{\theta-1}\mathbf1_{00 のUMVUEを見つけようとしています。θ1+θθ1+θ\frac{\theta}{1+\theta} の結合密度は(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n) fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0\begin{align} f_{\theta}(x_1,\cdots,x_n)&=\theta^n\left(\prod_{i=1}^n x_i\right)^{\theta-1}\mathbf1_{00 \end{align} 母集団pdfは1パラメータ指数ファミリに属しているため、これは完全な十分な統計がfθfθf_{\theta}θθ\thetaT(X1,…,Xn)=∑i=1nlnXiT(X1,…,Xn)=∑i=1nlnXiT(X_1,\ldots,X_n)=\sum_{i=1}^n\ln X_i 以降、最初の考えで、の私に与えるUMVUEによってレーマン・シェッフェの定理。この条件付き期待値が直接見つかるか、条件付き分布を見つける必要があるかどうかはわかりません 。E(X1)=θ1+θE(X1)=θ1+θE(X_1)=\frac{\theta}{1+\theta}E(X1∣T)E(X1∣T)E(X_1\mid T)θ1+θθ1+θ\frac{\theta}{1+\theta}X1∣∑ni=1lnXiX1∣∑i=1nlnXiX_1\mid \sum_{i=1}^n\ln X_i 一方、私は次のアプローチを検討しました: 我々は、つまり。Xi∼i.i.dBeta(θ,1)⟹−2θlnXi∼i.i.dχ22Xi∼i.i.dBeta(θ,1)⟹−2θlnXi∼i.i.dχ22X_i\stackrel{\text{i.i.d}}{\sim}\text{Beta}(\theta,1)\implies -2\theta\ln X_i\stackrel{\text{i.i.d}}{\sim}\chi^2_2−2θT∼χ22n−2θT∼χ2n2-2\theta\, T\sim\chi^2_{2n} したがって、カイ2乗pdfを使用して計算された次の未加工モーメントはrrr−2θT−2θT-2\theta\,TE(−2θT)r=2rΓ(n+r)Γ(n),n+r>0E(−2θT)r=2rΓ(n+r)Γ(n),n+r>0E(-2\theta\,T)^r=2^r\frac{\Gamma\left(n+r\right)}{\Gamma\left(n\right)}\qquad ,\,n+r>0 したがって、異なる整数の選択に対して、異なる整数の累乗の不偏推定量(およびUMVUE)が得られるようです。たとえば、およびとのUMVUEを直接指定してください。rrrθθ\thetaE(−Tn)=1θE(−Tn)=1θE\left(-\frac{T}{n}\right)=\frac{1}{\theta}E(1−nT)=θE(1−nT)=θE\left(\frac{1-n}{T}\right)=\theta1θ1θ\frac{1}{\theta}θθ\theta さて、我々が持っている。θ>1θ>1\theta>1θ1+θ=(1+1θ)−1=1−1θ+1θ2−1θ3+⋯θ1+θ=(1+1θ)−1=1−1θ+1θ2−1θ3+⋯\frac{\theta}{1+\theta}=\left(1+\frac{1}{\theta}\right)^{-1}=1-\frac{1}{\theta}+\frac{1}{\theta^2}-\frac{1}{\theta^3}+\cdots などのUMVUEを確実に取得できます。したがって、これらのUMVUEを組み合わせると、の必要なUMVUEを取得できます。この方法は有効ですか、それとも最初の方法から続行しますか?UMVUEが存在する場合、UMVUEは一意であるため、どちらも同じ答えを返すはずです。1θ,1θ2,1θ31θ,1θ2,1θ3\frac{1}{\theta},\frac{1}{\theta^2},\frac{1}{\theta^3}θ1+θθ1+θ\frac{\theta}{1+\theta} 明確にするために、E(1+Tn+T2n(n+1)+T3n(n+1)(n+2)+⋯)=1−1θ+1θ2−1θ3+⋯E(1+Tn+T2n(n+1)+T3n(n+1)(n+2)+⋯)=1−1θ+1θ2−1θ3+⋯E\left(1+\frac{T}{n}+\frac{T^2}{n(n+1)}+\frac{T^3}{n(n+1)(n+2)}+\cdots\right)=1-\frac{1}{\theta}+\frac{1}{\theta^2}-\frac{1}{\theta^3}+\cdots つまり、E(∑r=0∞Trn(n+1)...(n+r−1))=θ1+θE(∑r=0∞Trn(n+1)...(n+r−1))=θ1+θE\left(\sum_{r=0}^\infty \frac{T^r}{n(n+1)...(n+r-1)}\right)=\frac{\theta}{1+\theta} 場合、必要なUMVUEがである可能性はありますか?∑r=0∞Trn(n+1)...(n+r−1)∑r=0∞Trn(n+1)...(n+r−1)\displaystyle\sum_{r=0}^\infty \frac{T^r}{n(n+1)...(n+r-1)}θ>1θ>1\theta>1 用、私はなるだろう、及びUMVUEが異なることになるので。0<θ<10<θ<10<\theta<1g(θ )= θ (1 + θ + θ2+ ⋯ )g(θ)=θ(1+θ+θ2+⋯)g(\theta)=\theta(1+\theta+\theta^2+\cdots) 最初のアプローチの条件付き期待値を直接見つけることができなかったと確信しており、、私は先に進みました条件付き分布を検索します。そのため、の結合密度が必要でした。E(X1| Σ LNバツ私= t )= E(X1| Π X私= et)E(X1∣∑lnXi=t)=E(X1∣∏Xi=et)E(X_1\mid \sum\ln …