ガソリンスタンドの問題のアルゴリズムを理解する
ガスステーションの問題我々が与えられているの都市とそれらの間の道路。各道路には長さがあり、各都市には燃料の価格が定義されています。道路の1つの単位は燃料の1つの単位を要します。私たちの目標は、できるだけ安価な方法でソースから目的地に行くことです。私たちのタンクはいくつかの値によって制限されています。{ 0 、… 、n − 1 }nnn{0,…,n−1}{0,…,n−1}\{ 0, \ldots, n-1 \} アルゴリズムを理解しようとするので、解決策を計算するための手順を手動で書き留めました。残念ながら私は行き詰まりました-ある時点で考慮すべきエッジがありません、理由がわかりません、おそらく何かが足りないのです。 例: 道路: 0 ----------- 1 ------------ 2 -------------- 3 (それはしません単純である必要があります。グラフは任意です。つまり、0-> 2、0-> 3、1-> 3などの道路が存在する可能性があります。) ソース:0、デスティネーション:3、タンク:10ユニット 燃料価格:0 :10ユニット、1:10ユニット、2:20ユニット、3:12ユニット 長さ:0-> 1:9ユニット、1-> 2:1ユニット、2-> 3:7ユニット 最適解: 0で9ユニット、1で8ユニットを入力します。合計コストは170ユニット(9 * 10 + 8 * 10)になります。 そこで、ここに示すように計算してみました(2.2項) GV[u] is defined as: GV[u] = { TankCapacity - …