2
ブートストラップ標本の標本平均の分散
ましょは別個の観測値です(関係なし)。ましょX * 1、。。。、X * n個のブートストラップ標本(経験的CDFからのサンプル)を示すとせˉ X * N = 1X1,...,XnX1,...,XnX_{1},...,X_{n}X∗1,...,X∗nX1∗,...,Xn∗X_{1}^{*},...,X_{n}^{*}。検索E( ˉ X * N)とVR( ˉ X * Nを)。X¯∗n=1n∑ni=1X∗iX¯n∗=1n∑i=1nXi∗\bar{X}_{n}^{*}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*}E(X¯∗n)E(X¯n∗)E(\bar{X}_{n}^{*})Var(X¯∗n)Var(X¯n∗)\mathrm{Var}(\bar{X}_{n}^{*}) これまでのところ、はX 1、です。。。、X nそれぞれ確率1X∗iXi∗X_{i}^{*}X1,...,XnX1,...,XnX_{1},...,X_{n}したがって E(X ∗ i)=11n1n\frac{1}{n}および E(X ∗ 2 i)=1E(X∗i)=1nE(X1)+...+1nE(Xn)=nμn=μE(Xi∗)=1nE(X1)+...+1nE(Xn)=nμn=μ E(X_{i}^{*})=\frac{1}{n}E(X_{1})+...+\frac{1}{n}E(X_{n})=\frac{n\mu}{n}=\mu 与える VをR(X * I)= E (X * 2 I)- (E (X * I))2 = μ 2 + σ 2 - μ …