3D 4ノード要素に多項式表現を統合する方法は?
3次元の4ノード要素上の多項式を統合したい。FEAに関するいくつかの書籍では、任意のフラットな4つのnoned要素に対して積分が実行される場合について説明しています。この場合の通常の手順は、ヤコビ行列を見つけ、その行列式を使用して積分基底を正規化されたものに変更することです。 換言すれば∫Sf(x,y) dxdy∫Sf(x,y) dxdy\displaystyle\int_S f(x,y)\ \mathrm{d}x\,\mathrm{d}y\,∫−11∫−11f~(e,n) |det(J)|dedn∫1−1∫1−1f~(e,n) |det(J)|dedn\displaystyle\int^{-1}_{1}\int^{-1}_{1} \tilde{f}(e,n)\ \left|\det(J)\right|\,\mathrm{d}e\,\mathrm{d}n しかし、2Dの場合、任意のフラット要素を2×2のフラットな平面要素に変更します。 3D 4節点要素は一般に平坦ではありませんが、それでも何らかの方法でデカルト座標系に関連する2D座標系でマッピングできると思います。{x、y、z}を{e、n}で表現する方法と、この場合のヤコビ行列のサイズ(正方形であると想定されている)はどうなるかわかりません。