暗黙のサーフェスを方向付けられたポイントセットに適合させる
一連のポイントと対応する法線(または同等に接線)への2次近似に関する質問があります。二次曲面をポイントデータに近似する方法はよく研究されています。いくつかの作品は次のとおりです。 次曲面のフィッティングタイプ制約直接、ジェームズ・アンドリュース、カルロ・H.スパンコール コンピュータ支援設計&アプリケーション、10()、2013年、BBB、CCC データを二次曲面の当てはめ代数、I.アルSubaihiおよびGAワトソン、ダンディー大学 射影輪郭への適合も、このようないくつかの作品でカバーされています。 これらすべての作業から、Taubinの2次近似の方法は非常に人気があると思います。 G.タウビン、「暗示方程式で定義された平面曲線、表面および非平面空間曲線の推定、エッジおよび距離画像セグメンテーションへの応用」、IEEE Trans。PAMI、Vol。13、1991、pp1115-1138。 簡単に要約させてください。二次は代数形式で書くことができます: ここで係数ベクトルであり 3次元座標です。任意点嘘二次曲面上のなら、: QQQf(c,x)=Ax2+By2+Cz2+2Dxy+2Exz+2Fyz+2Gx+2Hy+2Iz+Jf(c,x)=Ax2+By2+Cz2+2Dxy+2Exz+2Fyz+2Gx+2Hy+2Iz+J f(\mathbf{c},\mathbf{x}) = A x^2 + By^2 + Cz^2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Iz + J cc\mathbf{c}xx\mathbf{x}xx\mathbf{x}QQQxTQx=0xTQx=0\mathbf{x}^TQ\mathbf{x}=0Q=⎡⎣⎢⎢⎢ADEGDBFHEFCIGHIJ⎤⎦⎥⎥⎥Q=[ADEGDBFHEFCIGHIJ] Q = \begin{bmatrix} A & D & E & G \\ D & B & …