オドメトリ運動モデルを使用した拡張カルマンフィルター
EKFローカリゼーションの予測ステップでは、線形化を実行し、(確率的ロボティクス[THRUN、BURGARD、FOX]ページ206で述べたように)速度運動モデルを使用するときのヤコビ行列を定義する必要があります。 ⎡⎣⎢xyθ⎤⎦⎥′=⎡⎣⎢xyθ⎤⎦⎥+⎡⎣⎢⎢⎢v^tω^t(−sinθ+sin(θ+ω^tΔt))v^tω^t(cosθ−cos(θ+ω^tΔt))ω^tΔt⎤⎦⎥⎥⎥[xyθ]′=[xyθ]+[v^tω^t(−sinθ+sin(θ+ω^tΔt))v^tω^t(cosθ−cos(θ+ω^tΔt))ω^tΔt]\begin{bmatrix} x \\ y \\ \theta \end{bmatrix}' = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \frac{\hat{v}_t}{\hat{\omega}_t}(-\text{sin}\theta + \text{sin}(\theta + \hat{\omega}_t{\Delta}t)) \\ \frac{\hat{v}_t}{\hat{\omega}_t}(\text{cos}\theta - \text{cos}(\theta + \hat{\omega}_t{\Delta}t)) \\ \hat{\omega}_t{\Delta}t \end{bmatrix} として計算されます GT=⎡⎣⎢⎢100010υtωt(−cosμt−1,θ+cos(μt−1,θ+ωtΔt))υtωt(−sinμt−1,θ+sin(μt−1,θ+ωtΔt))1⎤⎦⎥⎥GT=[10υtωt(−cosμt−1,θ+cos(μt−1,θ+ωtΔt))01υtωt(−sinμt−1,θ+sin(μt−1,θ+ωtΔt))001]G_{T}= \begin{bmatrix} 1 & 0 & \frac{υ_{t}}{ω_{t}}(-cos {μ_{t-1,θ}} + cos(μ_{t-1,θ}+ω_{t}Δ{t})) \\ 0 & 1 & \frac{υ_{t}}{ω_{t}}(-sin {μ_{t-1,θ}} …