3
ネイマン・ピアソンの補題
Mood、Graybill、Boes の著書「Introduction to the Theory of Statistics」から ネイマン・ピアソンの補題を読みました。しかし、私は補題を理解していません。 誰でも私に補題をわかりやすい言葉で説明してもらえますか?それは何を述べていますか? ネイマン・ピアソンの補題:レッツからのランダムサンプルである、二つの既知の値のいずれかであると、およびlet固定します。X1,…,XnX1,…,XnX_1,\ldots,X_nf(x;θ)f(x;θ)f(x;\theta)θθ\thetaθ0θ0\theta_0θ1θ1\theta_10<α<10<α<10<\alpha<1 ましょう 正の定数とすることのサブセットでれる満たすクリティカル領域C ^ *に対応する テスト\ gamma ^ *は、サイズ\ alphaの\ mathscr H_0:\ theta = \ theta_0対\ mathscr H_1:\ theta = \ theta_1の最も強力なテストです。k∗k∗k^*λ = L (θ 0、X 1、··· 、XのN)C∗C∗C^*XX\mathscr XPθ0[(X1,…,Xn)∈C∗]=α(1)(1)Pθ0[(X1,…,Xn)∈C∗]=α \tag 1 P_{\theta_0}[(X_1,\ldots,X_n)\in C^*] = \alpha λ = L (θ0; バツ1、… 、xn)L …