主成分分析(PCA)を実行した後、新しいベクトルをPCA空間に投影します(つまり、PCA座標系で座標を見つけます)。
を使用してR言語でPCAを計算しましたprcomp
。これで、ベクトルにPCA回転行列を掛けることができるはずです。このマトリックスの主成分を行または列に配置する必要がありますか?
r
pca
r
variance
heteroscedasticity
misspecification
distributions
time-series
data-visualization
modeling
histogram
kolmogorov-smirnov
negative-binomial
likelihood-ratio
econometrics
panel-data
categorical-data
scales
survey
distributions
pdf
histogram
correlation
algorithms
r
gpu
parallel-computing
approximation
mean
median
references
sample-size
normality-assumption
central-limit-theorem
rule-of-thumb
confidence-interval
estimation
mixed-model
psychometrics
random-effects-model
hypothesis-testing
sample-size
dataset
large-data
regression
standard-deviation
variance
approximation
hypothesis-testing
variance
central-limit-theorem
kernel-trick
kernel-smoothing
error
sampling
hypothesis-testing
normality-assumption
philosophical
confidence-interval
modeling
model-selection
experiment-design
hypothesis-testing
statistical-significance
power
asymptotics
information-retrieval
anova
multiple-comparisons
ancova
classification
clustering
factor-analysis
psychometrics
r
sampling
expectation-maximization
markov-process
r
data-visualization
correlation
regression
statistical-significance
degrees-of-freedom
experiment-design
r
regression
curve-fitting
change-point
loess
machine-learning
classification
self-study
monte-carlo
markov-process
references
mathematical-statistics
data-visualization
python
cart
boosting
regression
classification
robust
cart
survey
binomial
psychometrics
likert
psychology
asymptotics
multinomial