1
メトロポリスとヘイスティングスの統合-戦略が機能しないのはなぜですか?
を統合したい関数g(x)g(x)g(x)あるとし もちろん、がエンドポイントでゼロになり、爆発がなく、素晴らしい機能であると仮定します。私がいじっていた1つの方法は、Metropolis-Hastingsアルゴリズムを使用して、正規化定数が欠落している比例する分布からサンプルリストを生成することです これをと呼び、これらのについて統計を計算します。 g(x) x 1、 x 2、…、 x n∫∞−∞g(x)dx.∫−∞∞g(x)dx. \int_{-\infty}^\infty g(x) dx.g(x)g(x)g(x)x1,x2,…,xnx1,x2,…,xnx_1, x_2, \dots, x_nN = ∫ ∞ - ∞ G (X )D 、X P (X )F (xは)xは1g(x)g(x)g(x)N=∫∞−∞g(x)dxN=∫−∞∞g(x)dxN = \int_{-\infty}^{\infty} g(x)dx p(x)p(x)p(x)f(x)f(x)f(x)xxx1n∑i=0nf(xi)≈∫∞−∞f(x)p(x)dx.1n∑i=0nf(xi)≈∫−∞∞f(x)p(x)dx. \frac{1}{n} \sum_{i=0}^n f(x_i) \approx \int_{-\infty}^\infty f(x)p(x)dx. 以来、、私は置換することができるキャンセルする形の発現をもたらす、積分から そのため、その領域に沿ってに統合される場合、結果を取得する必要があります。これは、必要な答えを得るために逆数を取ることができます。したがって、サンプルの範囲を取得して(ポイントを最も効果的に使用するため)、とし、描画した各サンプルに対してU(x)= 1 / rとします。そのようにU(x)f (x )= U (x )/ g …