この推定量の分散は何ですか
関数fの平均、つまりを推定し ます。ここで、とは独立したランダム変数です。Iは、Fのサンプルを有するが、IIDないための:IID試料ありとそれぞれについてあるからサンプル:X Y Y 1、Y 2、… Y n Y i n i X X i 、1、X i 、2、… 、X i 、n iEX,Y[f(X,Y)]EX,Y[f(X,Y)]E_{X,Y}[f(X,Y)]XXXYYYY1,Y2,…YnY1,Y2,…YnY_1,Y_2,\dots Y_nYiYiY_ininin_iXXXXi,1,Xi,2,…,Xi,niXi,1,Xi,2,…,Xi,niX_{i,1},X_{i,2},\dots, X_{i,n_i} したがって、合計でサンプルf(X1,1,Y1)…f(X1,n1,Y1)…f(Xi,j,Yi)…f(Xn,nn,Yn)f(X1,1,Y1)…f(X1,n1,Y1)…f(Xi,j,Yi)…f(Xn,nn,Yn)f(X_{1,1},Y_1) \dots f(X_{1,n_1},Y_1 ) \dots f(X_{i,j},Y_i) \dots f(X_{n,n_n},Y_n) 平均を推定するには、 明らかになので、は不偏推定量です。、つまり推定量の分散が何であるかを考えています。 EX、Y[μ]=EX、Y[F(X、Y)]μVR(μ)μ=∑i=1n1/n∗∑j=1nif(Xi,j,Yi)niμ=∑i=1n1/n∗∑j=1nif(Xi,j,Yi)ni\mu=\sum_{i=1}^n 1/n * \sum_{j=1}^{n_i}\frac{ f(X_{i,j},Y_i)}{n_i}EX,Y[μ]=EX,Y[f(X,Y)]EX,Y[μ]=EX,Y[f(X,Y)]E_{X,Y}[\mu]=E_{X,Y}[f(X,Y)]μμ\muVar(μ)Var(μ)Var(\mu) 編集2:これは正しい差異ですか? それつまり、n = 1ですべてのの場合、分散は平均の分散になります。また、の場合、式は推定量の分散の標準式になります。これは正しいです?どうすればそれを証明できますか? Var(μ)=VarY(μi)n+∑i=1nVarX(f(X,Yi)))ni∗n2Var(μ)=VarY(μi)n+∑i=1nVarX(f(X,Yi)))ni∗n2Var(\mu)=\frac{Var_Y(\mu_i)}{n}+\sum_{i=1}^n \frac{Var_X(f(X,Y_i)))}{n_i*n^2}ni=∞ni=∞n_i=\inftyni=1ni=1n_i=1 編集(これを無視): だから私はいくつかの進歩を遂げたと思います:最初にを定義してみましょう。μi=∑nij=1f(Xi,j,Yi)niμi=∑j=1nif(Xi,j,Yi)ni\mu_i=\sum_{j=1}^{n_i}\frac{ f(X_{i,j},Y_i)}{n_i}EX[f(X,Yi)]EX[f(X,Yi)]E_X[f(X,Y_i)] 標準的な分散式を使用して、次のように記述できます。 Var(μ)=1/n2∑l=1n∑k=1nCov(μl,μk)Var(μ)=1/n2∑l=1n∑k=1nCov(μl,μk)Var(\mu)=1/n^2 …