を見つけるためのより簡単な方法
一様分布から引き出さ3つのIIDサンプル検討 、θはパラメータです。E [ X (2 )を見つけたい | X (1 )、X (3 ) ] ここで、X (i )は順序統計量iです。u(θ,2θ)u(θ,2θ)u(\theta, 2\theta)θθ\thetaE[X(2)|X(1),X(3)]E[X(2)|X(1),X(3)] \mathbb{E}\left[X_{(2)}| X_{(1)}, X_{(3)}\right] X(i)X(i)X_{(i)}iii 結果は しかし、この結果を示すことができる唯一の方法は長すぎるようです。簡単な解決策を思い付くことができません。何か不足していますか、ショートカットはありますか?E[X(2)|X(1),X(3)]=X(1)+X(3)2E[X(2)|X(1),X(3)]=X(1)+X(3)2 \mathbb{E}\left[X_{(2)}| X_{(1)}, X_{(3)}\right] = \frac{X_{(1)}+ X_{(3)}}{2} 私がすることは次のとおりです: 条件付き密度を見つける f(x(2)|x(1),x(3))=f(x(1),x(2),x(3))f(x(1),x(3))f(x(2)|x(1),x(3))=f(x(1),x(2),x(3))f(x(1),x(3)) f(x_{(2)}| x_{(1)}, x_{(3)}) = \frac{ f(x_{(1)}, x_{(2)}, x_{(3)})}{f(x_{(1)}, x_{(3)})} 私は統合します E[X(2)|X(1),X(3)]=∫xf(x|x(1),x(3))dxE[X(2)|X(1),X(3)]=∫xf(x|x(1),x(3))dx \mathbb{E}\left[X_{(2)}| X_{(1)}, X_{(3)}\right] = \int x f(x| …