サンプルの中央値は次数統計であり、非正規分布を持っているため、サンプルの中央値とサンプルの平均の有限サンプル分布(これは正規分布を持っています)は二変量正規分布ではありません。近似に頼ると、漸近的に次のことが成り立ちます(こちらの私の答えをご覧ください):
n−−√[(X¯nYn)−(μv)]→LN[(00),Σ]
と
Σ=(σ2E(|X−v|)[2f(v)]−1E(|X−v|)[2f(v)]−1[2f(v)]−2)
where X¯n is the sample mean and μ the population mean, Yn is the sample median and v the population median, f() is the probability density of the random variables involved and σ2 is the variance.
So approximately for large samples, their joint distribution is bivariate normal, so we have that
E(Yn∣X¯n=x¯)=v+ρσvσX¯(x¯−μ)
where ρ is the correlation coefficient.
Manipulating the asymptotic distribution to become the approximate large-sample joint distribution of sample mean and sample median (and not of the standardized quantities), we have
ρ=1nE(|X−v|)[2f(v)]−11nσ[2f(v)]−1=E(|X−v|)σ
So
E(Yn∣X¯n=x¯)=v+E(|X−v|)σ[2f(v)]−1σ(x¯−μ)
We have that 2f(v)=2/σ2π−−√ due to the symmetry of the normal density so we arrive at
E(Yn∣X¯n=x¯)=v+π2−−√E(∣∣∣X−μσ∣∣∣)(x¯−μ)
where we have used v=μ. Now the standardized variable is a standard normal, so its absolute value is a half-normal distribution with expected value equal to 2/π−−−√ (since the underlying variance is unity). So
E(Yn∣X¯n=x¯)=v+π2−−√2π−−√(x¯−μ)=v+x¯−μ=x¯