3
FEM離散化の弱い形式を導出する際に、部品による統合を使用する目的は何ですか?
PDEの強力な形式からFEM形式に移行する場合、最初に変分形式を述べることで常にこれを行う必要があるようです。これを行うには、強力な形式に何らかの(ソボレフ)空間の要素を掛けて、地域全体に統合します。これは受け入れられます。私が理解していないのは、なぜグリーンの式を使用する必要があるのか(1回または数回)です。 私は主にポアソンの方程式を扱ってきたので、例として(同種のディリクレ境界条件で)それをとると、 −∇2uu=f,u∈Ω=0,u∈∂Ω−∇2u=f,u∈Ωu=0,u∈∂Ω \begin{align} -\nabla^2u &= f,\quad u\in\Omega \\ u &= 0, \quad u\in\partial\Omega \end{align} 変分形式を形成する正しい方法は ∫Ωfvdx⃗ =−∫Ω∇2uvdx⃗ =∫Ω∇u⋅∇vdx⃗ −∫∂Ωn⃗ ⋅∇uvds⃗ =∫Ω∇u⋅∇vdx⃗ .∫Ωfvdx→=−∫Ω∇2uvdx→=∫Ω∇u⋅∇vdx→−∫∂Ωn→⋅∇uvds→=∫Ω∇u⋅∇vdx→. \begin{align} \int_\Omega fv\,\mathrm{d}\vec{x} &= -\int_\Omega\nabla^2 uv\,\mathrm{d}\vec{x} \\ &=\int_\Omega\nabla u\cdot\nabla v\,\mathrm{d}\vec{x} - \int_{\partial\Omega}\vec{n}\cdot\nabla u v\,\mathrm{d}\vec{s} \\ &=\int_\Omega\nabla u\cdot\nabla v\,\mathrm{d}\vec{x}. \end{align} しかし、最初の行の式を使用できないのは、FEMフォームを取得するために使用できる変分形式ではないのですか?双線形および線形形式b(u,v)=(∇2u,v)b(u,v)=(∇2u,v)b(u,v)=(\nabla^2 u, v)およびl(v)=(f,v)l(v)=(f,v)l(v)=(f, v)ませんか?ここでの問題は、線形基底関数(形状関数)を使用すると、剛性マトリックスがヌルマトリックス(反転不可)になるため、問題が発生することですか?しかし、非線形形状関数を使用するとどうなりますか?まだグリーンの式を使用する必要がありますか?する必要がない場合:推奨されますか?そうでない場合、変則的ではあるが弱くない定式化がありますか? ここで、高階微分を持つPDEがあるとしましょう。これは、グリーンの公式の使用方法に応じて、多くの可能な変分形式があることを意味しますか そして、それらはすべて(異なる)FEM近似につながりますか?