1
多項式サイズのDFAで認識される言語
固定有限アルファベット場合、正確にを受け入れる上の決定性有限オートマトン(DFA)が存在する場合、上の形式言語は正規です。ΣΣ\SigmaLLLΣΣ\SigmaΣΣ\SigmaLLL 私は、語長で多項式的にのみ成長するサイズのオートマタ族によって認識できるという意味で「ほぼ」規則的な言語に興味があります。 正式に、すべての単語に対して、成り立つ場合、形式言語はDFA ファミリーによって認識されます 、はあり、受け入れる場合(他の受け入れるかどうかに関係なく)、p-regular言語を、PTIMEで計算可能な多項式サイズのDFAファミリーによって認識される言語として定義させます。ような多項式すべてのLLL (An)(An)(A_n)w∈Σ∗w∈Σ∗w \in \Sigma^*n=|w|n=|w|n = |w|wwwLLLAnAnA_nwwwAiAiA_iP | A n | ≤ P (N )N(An)(An)(A_n)PPP|An|≤P(n)|An|≤P(n)|A_n| \leq P(n)nnn。(この名前 "p-regular"は私が作ったものです。私の質問は、これに別の名前が既に存在するかどうかを知ることです。これは置換オートマトンの意味でp-regular言語と同じではないことに注意してください。) P-正規言語のこのクラスは、もちろん正規言語は、(単に取るすべてのためのn、Aは正規言語を認識するいくつかのDFAです)。例えば、そのよく知られている:それは、それの完全なスーパーセットである{ n個のB N | N ∈ Nは }(文脈自由ではなく規則的であるが、それは、P-正規であるA NだけカウントしなければNを出現とNの出現B)。ただし、オートマトンは多項式サイズのDFAである必要があるためAn=AAn=AA_n = AnnnAAA{anbn∣n∈N}{anbn∣n∈N}\{a^n b^n \mid n \in \mathbb{N}\}AnAnA_nnnnaaannnbbb、一部の形式言語(実際には一部のコンテキストフリー言語)はp-regularではありません。たとえば、palindromesの言語はp-regularではありません。なぜなら、直感的に、単語の前半を読んだときに、この前半と後半を正確に一致させる必要があるため、可能な限り多くの異なる状態。 そのため、p-regular言語のクラスは、コンテキストフリー言語とは比べものにならない通常の言語の厳密なスーパーセットです。実際には、あなたも、多項式の最小の程度に基づいたp-正規言語を区別することにより、言語の階層を得ることができるものと思わ彼らはそのためのP -regular。この階層が厳密であることを示すために例を作成するのはそれほど難しくありません。ただし、これと、A nの計算の複雑さを制限する階層の代替定義との間の相互作用については、まだよく理解していません。PPPPPPAnAnA_n 私の質問は次のとおりです。p-regularと呼ばれるこのクラス、および関連する階層は以前に研究されたことがありますか?はいの場合、どこで、どの名前の下に? (可能なリンクは、フィールドまたはストリーミング、またはオンラインアルゴリズムです。言語認識問題のストリーミングアルゴリズムの用語では、決定論的なワンパス認識アルゴリズムを持つことができる言語のクラス(または階層)に興味があります。多項式の状態数(つまり対数メモリサイズ)を使用しますが、この論文または関連論文でこのクラスの定義を見つけられませんでした。ただし、問題の表現では、単語の長さは事前にわかっています。ストリーミングコンテキストに少ない自然れている:あなたのストリーミングで読んだ後に到達可能な状態の数という無限オートマトン、特別な「エンド・オブ・言葉」のシンボル、および制約としてこれを見ることができたの文字が多項式であるn個nnnnnn。私はこの区別が違いを生む可能性があると考えています:値が長さで割り切れるバイナリワードの言語は、固定長では簡単ですが、(私は推測します)以前の意味では無限オートマトンでは表現できないため、識別がありません長さが事前にわからない場合は作成できます。) (このp-regularクラスの動機は、確率的単語の言語メンバーシップの確率などのいくつかの問題が、言語が規則的であるときだけでなく、p-regularであるときにもPTIMEであるように見えることです。どのような状況でこれらの問題が扱いやすいかを正確に特徴付けるため)