平均絶対偏差は標準偏差よりも小さいですか?
この定義を使用して、一般的な場合の平均絶対偏差と標準偏差を比較したいと思います。 MAD=1n−1∑1n|xi−μ|,SD=∑n1(xi−μ)2n−1−−−−−−−−−−−√MAD=1n−1∑1n|xi−μ|,SD=∑1n(xi−μ)2n−1MAD = \frac{1}{n-1}\sum_1^n|x_i - \mu|, \qquad SD = \sqrt{\frac{\sum_1^n(x_i-\mu)^2}{n-1}} ここで、です。μ=1n∑n1xiμ=1n∑1nxi\mu =\frac{1}{n}\sum_1^n x_i すべてのに対してあるというのは本当ですか?MAD≤SDMAD≤SDMAD \le SD{xi}n1{xi}1n\{x_i\}^n_1 すべての場合はであるためfalseです。n=2n=2n=2x+y≥x2+y2−−−−−−√x+y≥x2+y2x+y \ge \sqrt{x^2+y^2}x,y≥0x,y≥0x, y \ge 0 それを示すのは簡単です: MAD≤nn−1−−−−−√×SDMAD≤nn−1×SDMAD \le \sqrt{\frac{n}{n-1}} \times SD