取得ゲート
現在、ニールセンとチュアンによる「量子計算と量子情報」を読んでいます。量子シミュレーションに関するセクションでは、説明的な例(セクション4.7.3)を示していますが、私にはよくわかりません。 キュービットシステムに 作用するハミルトニアン あるとします。これはすべてのシステムを含む相互作用であるにもかかわらず、実際には、効率的にシミュレートできます。私たちが望むことは、単純な量子回路実装であるの任意の値について、。場合、これを正確に行う回路を図4.19に示します。主な知見は、ハミルトニアンは、システム内のすべての量子ビットを含むが、それにそうすることである古典的な方法:システムに適用される位相シフトはであれば、パリティのH=Z1⊗Z2⊗⋯⊗Zn,(4.113)(4.113)H=Z1⊗Z2⊗⋯⊗Zn, H = Z_1 ⊗ Z_2 ⊗ \cdots ⊗ Z_n,\tag{4.113}nnne−iHΔte−iHΔte^{-iH\Delta t}ΔtΔt\Delta tn=3n=3n = 3e−iΔte−iΔte^{-i\Delta t}nnn計算ベースのキュービットは偶数です。そうでない場合、位相シフトはます。したがって、単純なシミュレーションは、最初に古典的にパリティを計算し(結果を補助量子ビットに保存し)、次にパリティに条件付けられた適切な位相シフトを適用し、次にパリティを非計算します(補助を消去する)。eiΔteiΔte^{i\Delta t}HHH さらに、同じ手順を拡張すると、より複雑な拡張ハミルトニアンをシミュレートできます。具体的には、の形式のハミルトニアンを効率的にシミュレートできますここで、はがいずれかを指定して、番目のキュービットに作用するパウリ行列(または恒等式)。アイデンティティ演算が実行されるキュービットは無視でき、XまたはY項は単一のキュービットゲートによってZ演算に変換できます。これにより、上記のようにシミュレートされた(4.113)の形式のハミルトニアンが残ります。H=⨂k=1nσkc(k),H=⨂k=1nσc(k)k,H = \bigotimes_{k=1}^n\sigma_{c\left(k\right)}^k,σkc(k)σc(k)k\sigma_{c(k)}^kkkkc(k)∈{0,1,2,3}c(k)∈{0,1,2,3}c(k) \in \{0, 1, 2, 3\}{I,X,Y,Z}{I,X,Y,Z}\{I, X, Y, Z\}XXXYYYZZZ エレメンタリゲート(たとえば、トフォリゲート)からゲートを取得するにはどうすればよいですか?e−iΔtZe−iΔtZe^{-i\Delta t Z}