タグ付けされた質問 「symmetry」

2
対称性と計算の難しさの関係?
-fixed点フリー同型問題は、グラフ同型少なくとも移動を要求K (N )ノード。問題は、c > 0 に対してk (n )= n cの場合、N P完全です。kkkk(n)k(n)k(n)NPNPNPk(n)=nck(n)=nck(n)=n^cccc ただし、場合、問題はグラフ同型問題に還元可能な多項式時間チューリングです。もしK (N )= O (ログN /ログログN )、問題がであるグラフ同型問題にチューリング等価多項式時間であり、N P Iとであることが知られていないN Pの -complete。グラフ自己同型問題は、グラフ同型問題にチューリング還元可能です。k(n)=O(logn)k(n)=O(log⁡n)k(n)=O(\log n)k(n)=O(logn/loglogn)k(n)=O(log⁡n/log⁡log⁡n)k(n)=O(\log n/\log \log n)NPINPINPINPNPNP グラフ自己同型によって移動した頂点の数をカウントする複雑さについて、Antoni LozanoおよびVijay Raghavan Foundation of Software Technology、LNCS 1530、pp。295–306 検出しようとしているオブジェクトの対称性を高めると、(自己同型によって移動する必要のあるノードの数で示されるように)計算の困難さが増しているように見えます。これは、NP完全版からグラフ自己同型(GA)への多項式時間チューリングの削減の欠如を説明しているようです。 この対称性と硬度の関係をサポートする難しい問題の別の例はありますか?

2
高度に対称なNPまたはP完全言語がありますか?
そこに存在する、対称性基の一部ファミリー有するNP-またはP-完全言語G N(またはgroupoidをセットに(多項式時間で)が、その後、アルゴリズムの質問がよりオープンになる)作用L N = { L ∈ L ∣ | l | = n }軌道がほとんどない、つまり| L n / G n | &lt; n cは十分な大きさのnといくつかのcであり、G nLLLGnGnG_nLn={l∈L∣|l|=n}Ln={l∈L∣|l|=n}L_n = \{ l \in L \mid |l| = n \}|Ln/Gn|&lt;nc|Ln/Gn|&lt;nc|L_n / G_n| < n^cnnncccGnGnG_n効率的に生成できますか?nnn ここでのポイントは、このような言語/グループを見つけ、で多項式時間グループのアクションの下で正規形を見つけることができる場合、P T I M EによってLをスパース言語に減らすことができる特定のNの正規形を計算し、P = N PまたはL = Pであることを意味しますFPFP\mathrm{FP}LLLPTIMEPTIME\mathrm{PTIME}NNNP=NPP=NP\mathrm{P = …

1
CNF式のランダム性の測定
CNF式は、ランダムと構造化の2つの大まかなクラスに大まかに分割できることが広く知られています。構造化されたCNF式は、ランダムなCNF式とは反対に、何らかの順序を示し、偶然には起こりそうにないパターンを示します。ただし、ある程度のランダム性を示す構造式(つまり、特定の特定の節のグループは他の特定の群よりもはるかに構造化されていないように見える)や、弱い形式の構造を持つランダムな式(つまり、特定の節のグループは他の部分よりもランダムではないように見える) )。したがって、式のランダム性は単なるyes / noの事実ではないようです。 ましょう CNF式与えられ、その関数であるF ∈ Fの間の真の値を返し0と1:包括0ながら、手段純粋な構造式を1つの手段純粋ランダム式。r :F→[0,1]r:F→[0,1]r: \mathcal{F} \rightarrow [0,1]F∈FF∈FF \in \mathcal{F}000111000111 誰かがそのようなを発明しようとしたことがあるのだろうか。もちろん、rによって返される値は(少なくともこれは私の意図です)堅実な理論的真理ではなく、いくつかの合理的な基準に従った実際的な測定値になります。rrrrrr また、の定義、または式の他の有用な全体的な特性の決定に使用できる統計指標を誰かが定義し、研究したことがあるかどうかを知りたいと思っています。統計指標とは、次のようなものです。rrr HCV(ヒットが分散をカウント)してみましょう変数与えられた、という関数であるVのJ ∈ Nは、回数を返しV j個に表示されてFを。してみましょうVがで使用される変数の集合とするF。してみましょうˉ H F = 1hF:N→NhF:N→Nh_F: \mathbb{N} \rightarrow \mathbb{N}vj∈Nvj∈Nv_j \in \mathbb{N}vjvjv_jFFFVVVFFFAHC(平均ヒットカウント)です。HCVは次のように定義されます: HVC=1h¯F=1|V|∑vj∈VhF(vj)h¯F=1|V|∑vj∈VhF(vj)\bar{h}_F = \frac{1}{|V|} \sum_{v_j \in V}{h_F(v_j)} 構成例ではないが、ランダムな事例では、HCVは、(すべての変数は時間のほぼ同じ数の記載されている)非常に低い(いくつかの変数非常に頻繁に使用され、他の一部は使用されていません。つまり、「使用量のクラスター」があります。HVC=1|V|∑vj∈V(hF(vj)−h¯F)2HVC=1|V|∑vj∈V(hF(vj)−h¯F)2HVC = \frac{1}{|V|} \sum_{v_j \in V}{(h_F(v_j) - \bar{h}_F)^2} AID(平均不純物度)してみましょうの回数もvのjのポジティブを発生し、聞かせてH - F(VのJ)、それは負の発生回数。ましょI :N → [ 0 …

2
自明ではないグラフの自己同型を近似していますか?
グラフ自己同型は、エッジセット全単射を誘発するグラフノードの順列です。正式には、 iffようなノードの順列です。 EEEfff(u,v)∈E(u,v)∈E(u,v)\in E(f(u),f(v))∈E(f(u),f(v))∈E(f(u),f(v))\in E 順列の違反エッジを、非エッジにマップされるエッジ、またはプリイメージが非エッジであるエッジとして定義します。 入力:非剛体グラフG(V,E)G(V,E)G(V, E) 問題:違反したエッジの数を最小限に抑える(同一でない)置換を見つけます。 最小数の違反エッジで(非同一)置換を見つけることの複雑さは何ですか?(ある程度の複雑さの仮定の下で)最大次数が制限されたグラフの問題は難しいですか?たとえば、3次グラフは難しいですか?kkk 動機:問題は、グラフ自己同型問題(GA)の緩和です。入力グラフは自明ではない自己同型(たとえば、非剛体グラフ)を持つ場合があります。近似自己同型性(クローゼット順列)を見つけるのはどのくらい難しいですか? 4月22日を編集 剛体(非対称)グラフには、自明な自明性しかありません。非剛体グラフには対称性(限定)があり、その対称性を近似する複雑さを理解したいと思います。

1
ランダムなブール関数に自明自明群がある確率はどのくらいですか?
ブール関数与えられると、自己同型群ます。fffAut(f)={σ∈Sn ∣∀x,f(σ(x))=f(x)}Aut(f)={σ∈Sn ∣∀x,f(σ(x))=f(x)}Aut(f) = \{\sigma \in S_n\ \mid \forall x, f(\sigma(x)) = f(x) \} 既知の境界はありますか?いくつかのグループという形式の数量について何か知っていますか?Prf(Aut(f)≠1)Prf(Aut(f)≠1)Pr_f(Aut(f) \neq 1)Prf(G≤Aut(f))Prf(G≤Aut(f))Pr_f(G \leq Aut(f))GGG
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.