1
混合効果モデルの残差をブートストラップすると、なぜ保守的な信頼区間が得られないのですか?
私は通常、複数の個人がそれぞれ2つ以上の条件のそれぞれで複数回測定されるデータを扱います。私は最近、条件間の差異の証拠を評価するために混合効果モデリングを試しindividual、ランダム効果としてモデリングしています。そのようなモデリングからの予測に関する不確実性を視覚化するために、私はブートストラップを使用しており、ブートストラップの各反復で、個体と観測内の条件内の両方が置換でサンプリングされ、新しい混合効果モデルが予測から計算されます取得されます。これは、ガウス誤差を仮定するデータに対しては正常に機能しますが、データが2項式の場合、各反復で比較的計算集中型の2項式混合効果モデルを計算する必要があるため、ブートストラップに非常に長い時間がかかる可能性があります。 私が考えていたのは、元のモデルの残差を使用して、ブートストラップの生データの代わりにこれらの残差を使用できるため、ブートストラップの各反復でガウス混合効果モデルを計算できるというものでした。生データの二項モデルからの元の予測を残差からのブートストラップ予測に追加すると、元の予測の95%CIが生成されます。 ただし、私は最近、このアプローチの簡単な評価をコード化し、2つの条件の差をモデル化せず、95%信頼区間にゼロを含めることができなかった時間の割合を計算しました。上記の残差ベースのブートストラップ手順では、かなり強い反保守的な間隔(ゼロを除外するのは、時間の5%以上)。さらに、元のガウシアンであるデータに適用した場合と同様に、このアプローチの同様の評価をコード化し(以前と同じリンク)、同様に(極端ではないが)反保守的なCIを取得しました。これがなぜなのか、何か考えはありますか?