積分を数値的に反復することはいつ有利ですか?
ある場合には(n+1)(n+1)(n+1)の形の次元積分は 通常1は、ドメイン全体にわたって多次元統合ライブラリを使用してこれを評価するであろう [ 0 、1 ] のn + 1。∫[0,1]n+1f(x,y)dnxdy,∫[0,1]n+1f(x,y)dnxdy, \int_{[0,1]^{n+1}} f(x, y)\,\mathrm{d}^n x \,\mathrm{d}y,[0,1]n+1[0,1]n+1[0,1]^{n+1} しかし、1次元の求積法を使用して積分を個別に実行し、多次元積分ライブラリを使用して他のn座標で被積分関数を評価することが理にかなっている条件はありますか? ∫ [ 0 、1 ] nは G (X )yyynnn∫[0,1]ng(x)dnx,g(x)=∫10f(x,y)dy.∫[0,1]ng(x)dnx,g(x)=∫01f(x,y)dy. \int_{[0,1]^n}g(x)\,\mathrm{d}^nx, \qquad g(x) = \int_0^1 f(x,y)\,\mathrm{d}y. これは、たとえば、がyの関数として特に滑らかであるがxの関数としては滑らかでない場合に意味があります。しかし、この場合、正確にどれほどスムーズでなければならないのでしょうか。1-d求積法の評価点が多すぎると「無駄」になるため、ほとんど意味がないと思いますが、これが常に当てはまるとは思いません。これは、高次元の統合方法の設計によって保証されますか?fffyyyxxx 自分の場合、ブラックボックスであるが、に区分平滑Y、およびキンクの未知量を有しにジャンプX未知の位置で、かつnは極めて高い(N ≥ 4)の積分にxが有しています特に多くの次元のために何かを行うために。yの積分は、のような通常の方法で実行できます。この例では、関数はyで十分滑らかであり、ほとんど機能しているように見えますが、繰り返しの積分は最終的に30倍遅くなるため、アプローチが誤っているのではないかと思います。fffyyyxxxnnnn≥4n≥4n\geq 4xxxyyyquadgkyyy これが文献のどこですでに議論されているかを知っているなら、それも役に立ちます。 例。 (これが簡単ではない理由です)私が本当に興味を持っているものとは異なり、非常に滑らかな「簡単な」積分を考えてみましょう: 被積分関数で ナイーブ n次元モンテカルロを実行するか、または積分された被積分関数でナイーブ(n − 1 )次元モンテカルロを x 1について一度積分すると、 g (x 2 :n)= …