5
長方形を凸ポリゴンにパックするが回転はしない
(2次元)長方形の同一のコピーを重複することなく凸(2次元)多角形に詰める問題に興味があります。私の問題では、長方形を回転させることはできず、長方形は軸と平行になっていると仮定できます。長方形のサイズとポリゴンの頂点が与えられ、長方形の同一コピーをいくつポリゴンに詰め込めるかを尋ねられます。長方形の回転を許可されている場合、この問題はNP困難であると考えられます。ただし、できない場合は何がわかりますか?凸多角形が単なる三角形の場合はどうですか?問題が実際にNP困難である場合、既知の近似アルゴリズムはありますか? これまでの要約(11年3月21日)。Peter Shorは、この問題を凸多角形のパッキング単位正方形の1つと見なすことができ、パッキングする正方形/長方形の数に多項式の境界を課す場合、NPに問題があることを観察します。Sariel Har-Peledは、同じ多項式で区切られた場合のPTASがあることを指摘しています。ただし、一般に、パックされた正方形の数は、整数のペアの短いリストのみで構成される入力のサイズで指数関数的になります。次の質問は未解決のようです。 NPには完全な無制限バージョンがありますか?無制限バージョン用のPTASはありますか?PまたはNPCの多項式境界の場合ですか?そして、私の個人的なお気に入りは、ユニットの正方形を三角形に詰めることに自分を制限する場合、問題は簡単になりますか?