スパース入力での計算関数の単調な回路の複雑さ
重量バイナリ文字列のは、文字列内の1の数です。少数の入力で単調関数を計算することに興味がある場合はどうなりますか?|x||x||x|x∈{0,1}nx∈{0,1}nx\in\{0,1\}^n 私たちは、グラフが持っているかどうかの決定ということを知っているのグラフは、最大で例えばある場合-cliqueはモノトーン回路のは難しいですが(他の人アロンBoppana、1987年の中で参照)が、のモノトーン囲まれた深回路を見つけることが可能とエッジサイズクリーク を決定します。kkkk3k3k^3f(k)⋅nO(1)f(k)⋅nO(1)f(k)\cdot n^{O(1)}kkk 私の質問:重みが未満の入力でも、単調な回路では計算が難しい関数はありますか?ここでハードとは、回路サイズ意味し ます。kkknkΩ(1)nkΩ(1)n^{{k}^{\Omega(1)}} さらに良い:重みと入力だけを気にする場合でも、計算が難しい明示的な単調関数はありか?k1k1k_1k2k2k_2 EmilJeřábekは、既知の下限が2つの入力クラスを分離するモノトーン回路に当てはまることを既に観察しました( -cliques対最大 -colorable graphs)。固定重量の2つの入力クラスで機能します。これにより、は関数になりますが、これは避けたいものです。aaa(a−1)(a−1)(a-1)k2k2k_2nnn 本当に好きなのは、よりもはるかに小さいおよび明示的なハード関数です(パラメーター化された複雑度フレームワークのように)。あればさらに良い。 k1k1k_1k2k2k_2nnnk1=k2+1k1=k2+1k_1=k_2+1 正の答えは、任意の回路の指数下限を意味することに注意してください。k1=k2k1=k2k_1=k_2 更新:この質問は部分的に関連する場合があります。