タグ付けされた質問 「high-dimensional-geometry」

1
ポイント 2つのサイズセットがあるとします。回転のみが異なる場合のテストの(時間)複雑さは何ですか?:X = OYのような回転行列が存在しますか?X 、Y ⊂ R nはmmmX,Y⊂RnX,Y⊂RnX,Y\subset \mathbb{R}^nX = O YOOT=OTO=IOOT=OTO=IOO^T=O^TO=IX=OYX=OYX=OY ここで実際の値を表す問題があります-簡単にするために、基本的な算術演算のコストをO(1)として想定できるように、各座標に(短い)代数公式があると仮定します。 基本的な質問は、この問題がPにあるかどうかです。 一見するとこの問題は単純に見えるかもしれませんが、通常は点や角度のような局所関係のノルムをテストするのに十分ですが、例えばグラフ同型問題と同等の厄介な例があります。 具体的には、強正則グラフ(SRG)の隣接行列の固有空間を見て、幾何学的解釈を行うことができます。以下は最も単純な例です。2つの16頂点SRGは、ローカルに同一に見えますが、同型ではありません。 SRGの隣接行列は常に(既知の公式の)3つの固有値のみを持ちます-上記の固有値2(カーネル)の固有空間を見ると、次元6を持ちます-上記の基底。正規直交化(Gram-Schmidt)、可能な正規直交基底の大きな空間が得られます回転によって異なり、「垂直ベクトル」を回転します:長さ6の16ベクトルのセットをとして定義します、ここで、は2番目のグラフに対応しますとが回転のみで異なる場合、グラフ同型質問を質問に変換します。O (6 )X ⊂ R 6 | X | = 16 Y X YA−2IA−2IA-2IO(6)O(6)O(6)X⊂R6X⊂R6X\subset \mathbb{R}^6|X|=16|X|=16|X|=16YYYXXXYYY 難点は、これらすべてのポイントが球体にあり、元の関係を再作成することです:すべての隣人(ここでは6)は90度未満の固定角度にあり、すべての非隣人(ここでは9)は90度以上の別の固定角度にあります上の写真。 そのため、ノルムとローカル角度に基づいたテストでは、グラフの同型問題に戻りますが、幾何学的解釈により、回転不変量などのグローバルプロパティを操作できます。 一般的に、自然な「グローバル」アプローチは、両方のセット「モジュロ回転」(自由度を含む)を記述し、両方の記述が同一であるかどうかを確認しようとします。n(n−1)/2n(n−1)/2n(n-1)/2 通常、回転不変式を定義できます-問題は、回転の侵略者の完全なセットを構築することです:モジュロ回転のセットを完全に決定します。 ポイント(?)に直接作用する実用的な回転不変式の方法を見つけることはできませんでしたが、多項式(stack)に対しては行うことができます。次数2の多項式場合、回転不変量の完全な基底は、たとえばです。図式彼らは、長さとして表すことができ、サイクル、我々は同様に構築することができるより高次の多項式のための回転不変量を、例えば、(残りの問題は、それらの独立である)程度1,2,3,4-多項式の単一の回転不変量に対応する以下の各グラフ:T r (A k)k = 1 、… 、n kxTAxxTAxx^T A xTr(Ak)Tr(Ak)Tr(A^k)k=1,…,nk=1,…,nk=1,\ldots,nkkk 問題は、多項式でポイントのセットを記述する方法です。一般に、高次多項式、たとえばが必要ですが、SRGのセットはかなりregular-次数6の多項式でのみ記述できます:p(z)=∏x∈X(x⋅(z−x))p(z)=∏x∈X(x⋅(z−x))p(z)=\prod_{x\in X} (x\cdot (z-x)) …

1
配置で最大のセル
Q。次元 dの超平面の配置で最大の体積境界セルを見つけることの複雑さは何 ですか?んんnddd 私はこれを知っているべきだと思います...しかし、私は決定的なリファレンスを見つけていません。 それは?d = 2の特殊化はどうですか:行の配置で最大の領域境界セル?Ω (nd)Ω(んd)\Omega(n^d)d= 2d=2d{=}2

1
R ^ dのボロノイセルのVC次元?
ポイントがあるとします。これらはボロノイ図を誘導します。ポイントのそれぞれにラベルを割り当てると、これらはバイナリ関数を誘導します。質問:いくつかの点とこれらの点のいくつかのラベル付けによって引き起こされるすべてのそのような可能なバイナリ関数のVC次元は何ですか?kkk k± R d kRdRd\mathbb{R}^dkkk±±\pmRdRd\mathbb{R}^dkkk

1
高次元凸多面体のボリュームを計算しています
高次元凸多面体の体積を計算・推定するためのソフトウェアを探しています。具体的には、私は体を扱うことができるプログラム、に興味がの頂点Dパラメータを持つ次元空間として概ね次の有界:D ≤ 50 とN ≤ 1000。面の数は保証されていないことに注意してください。んnndddd≤ 50d≤50d \le 50N ≤ 1000年n≤1000n \le 1000 Jeff Ericksonのページには、255面のハード制限があるプログラムVinci-1.0.5へのリンクがあります。これは実装の制限であり、アルゴリズム自体はおそらくより多くの顔を適切な時間で処理できます。 マルコフチェーンに基づく推定手法の実装は見つかりませんでしたが、効率はさらに悪くなると思います。 上記のパラメータの範囲を処理できるソフトウェア、またはそれをある程度緩和するソフトウェアはありますか?他の参考文献にも感謝します。

2
合理ポリトープ内の点生成
分離オラクルによって定義される有理多面体を考えます。つまり、はとして暗黙的に記述できますが、は非常に大きい場合、オラクルを使用します。これは、点が与えられると、と言うか、ような半空間を返します。P P = { X ∈ R K:AはX ≤ B 、A ∈ ZのM × K、B ∈ ZのM } M のx ∈ R K X ∈ P X ∉ SPPPPPPP= { X ∈ Rk:Ax≤b,A∈Zm×k,b∈Zm}P={x∈Rk:Ax≤b,A∈Zm×k,b∈Zm}P = \{x \in R^k: Ax \leq b, A \in Z^{m \times k}, b \in Z^m \}mmmx∈Rkx∈Rkx \in …
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.