分離オラクルによって定義される有理多面体を考えます。つまり、はとして暗黙的に記述できますが、は非常に大きい場合、オラクルを使用します。これは、点が与えられると、と言うか、ような半空間を返します。P P = { X ∈ R K:AはX ≤ B 、A ∈ ZのM × K、B ∈ ZのM } M のx ∈ R K X ∈ P X ∉ S
私の目標は、点を見つけるか、が空であると判断することです。私はと表現サイズで多項式の実行時間を目指しています。ここで、 は最大絶対値です。つまり、アルゴリズムは分離オラクルへの呼び出しを多項式のみにする必要があります。P U k U A
一般に、は低次元の超平面に含まれる可能性があるため、楕円体法を使用することには問題があります。したがって、カチヤンのトリックと同様に、(および分離オラクル)を変更してを使用します。ここで、はようなものです。直感的に、定義半空間定義と同じであるそれらがによって翻訳されている唯一のこと。多面体の、次のプロパティがあります。である空のIFF空で、あれば、空にされていないP P ϵ ϵ 1 / U P ϵ P ϵ P ϵ P ϵ P P P ϵ フルディメンションです。
私の質問は次のとおりです。アルゴリズムが点見つけると仮定します。を使用してポイントを生成することは可能ですか? P P