1
L1へのL2の等尺性埋め込み
与えられたことが知られているnnnの-pointサブセットℓd2ℓ2d\ell_2^d(与えられるnnnの点RdRd{\mathbb R}^dユークリッド距離)が内等角それらを埋め込むことが可能である。ℓ(n2)1ℓ1(n2)\ell^{n\choose 2}_1 アイソメは(おそらく、ランダム化された)多項式時間で計算可能ですか? 有限精度の問題があるため、正確な質問は {\ mathbb R} ^ dおよび\ epsilon> 0のn点のセットが与えられると、マッピングf:X \ to {\ mathbb R} ^ {n \ choose 2}が計算可能(おそらくランダム性を使用)時間多項式におけるN対数で1 / \イプシロン毎にこのようなことは、X、XでY \我々はXXXnnnRdRd{\mathbb R}^dϵ>0ϵ>0\epsilon >0f:X→R(n2)f:X→R(n2)f: X \to {\mathbb R}^{n\choose 2}nnn1/ϵ1/ϵ1/\epsilonx,y∈Xx,y∈Xx,y\in X ||f(x)−f(y)||1≤||x−y||2≤(1+ϵ)⋅||f(x)−f(y)||1||f(x)−f(y)||1≤||x−y||2≤(1+ϵ)⋅||f(x)−f(y)||1|| f(x)-f(y)||_1 \leq ||x-y||_2 \leq (1+ \epsilon) \cdot || f(x)-f(y) ||_1 (注:O(\ epsilon ^ {-2} \ cdot …