5
時系列モデリングのための状態空間モデルとカルマンフィルターの欠点は何ですか?
状態空間モデルとKFのすべての優れた特性を考えると、状態空間モデリングとカルマンフィルター(またはEKF、UKF、粒子フィルター)を推定に使用することの欠点は何でしょうか?ARIMA、VAR、またはアドホック/ヒューリスティック手法などの従来の方法論について考えてみましょう。 調整するのは難しいですか?彼らは複雑で、モデルの構造の変化が予測にどのように影響するかを見るのは難しいですか? または、別の言い方をすれば、状態空間モデルに対する従来のARIMA、VARの利点は何ですか? 状態空間モデルの利点のみを考えることができます。 いくつかの静的モデルの構造的な破損、シフト、時変パラメーターを簡単に処理します。これらのパラメーターを状態空間モデルの動的状態にするだけで、モデルはパラメーターのシフトに合わせて自動的に調整されます。 欠損データを非常に自然に処理します。KFの移行ステップを実行し、更新ステップは実行しません。 状態空間モデル自体のオンザフライパラメーター(ノイズと遷移/観測行列の共分散)を変更できるため、現在の観測が他とは少し異なるソースからのものである場合は、実行せずに簡単に推定に組み込むことができます何か特別なこと; 上記のプロパティを使用すると、不規則な間隔のデータを簡単に処理できます。観測間の間隔に従って毎回モデルを変更するか、定期的な間隔を使用して観測のない間隔を欠損データとして扱います。 同じモデル内の異なるソースからのデータを同時に使用して、1つの基本量を推定できます。 いくつかの解釈不可能な動的コンポーネントからモデルを構築し、それらを推定することができます。 どのARIMAモデルも状態空間形式で表現できますが、単純な状態空間モデルのみがARIMA形式で正確に表現できます。