GBMパッケージとGBMを使用したキャレット


12

私はを使用してモデルのチューニングを行ってきましたがcaretgbmパッケージを使用してモデルを再実行しています。caretパッケージが使用gbmし、出力が同じである必要があることは私の理解です。ただし、を使用した簡単なテスト実行でdata(iris)は、評価指標としてRMSEとR ^ 2を使用したモデルで約5%の不一致が示されています。を使用して最適なモデルのパフォーマンスを見つけたいが、部分的な依存関係プロットを利用するためにcaret再実行しgbmます。再現性のために以下のコード。

私の質問は次のとおりです。

1)これらの2つのパッケージは同じであっても違いがあるのはなぜですか(確率的ですが、5%がやや大きな違いであることがわかります。特に、次のような素晴らしいデータセットを使用していない場合 iris、モデリングの) 。

2)両方のパッケージを使用する利点または欠点はありますか?

3)無関係:irisデータセットを使用した場合、最適な値interaction.depthは5ですが、読み取り値が最大値floor(sqrt(ncol(iris)))である2 を超えるはずです。これは厳密な経験則ですか、それとも非常に柔軟ですか。

library(caret)
library(gbm)
library(hydroGOF)
library(Metrics)
data(iris)

# Using caret
caretGrid <- expand.grid(interaction.depth=c(1, 3, 5), n.trees = (0:50)*50,
                   shrinkage=c(0.01, 0.001),
                   n.minobsinnode=10)
metric <- "RMSE"
trainControl <- trainControl(method="cv", number=10)

set.seed(99)
gbm.caret <- train(Sepal.Length ~ ., data=iris, distribution="gaussian", method="gbm",
              trControl=trainControl, verbose=FALSE, 
              tuneGrid=caretGrid, metric=metric, bag.fraction=0.75)                  

print(gbm.caret)
# caret determines the optimal model to be at n.tress=700, interaction.depth=5, shrinkage=0.01
# and n.minobsinnode=10
# RMSE = 0.3247354
# R^2 = 0.8604

# Using GBM
set.seed(99)
gbm.gbm <- gbm(Sepal.Length ~ ., data=iris, distribution="gaussian", n.trees=700, interaction.depth=5,
           n.minobsinnode=10, shrinkage=0.01, bag.fraction=0.75, cv.folds=10, verbose=FALSE)
best.iter <- gbm.perf(gbm.gbm, method="cv")
print(best.iter)
# Here the optimal n.trees = 540

train.predict <- predict.gbm(object=gbm.gbm, newdata=iris, 700)

print(rmse(iris$Sepal.Length, train.predict))
# RMSE = 0.2377

R2 <- cor(gbm.gbm$fit, iris$Sepal.Length)^2
print(R2)
# R^2 = 0.9178`

回答:


6

デフォルトのグリッドで使用してパラメーターを最適化し、predictを使用して同じ結果を得ます。

R2.caret-R2.gbm = 0.0009125435

rmse.caret-rmse.gbm = -0.001680319

library(caret)
library(gbm)
library(hydroGOF)
library(Metrics)
data(iris)

# Using caret with the default grid to optimize tune parameters automatically
# GBM Tuning parameters:
# n.trees (# Boosting Iterations)
# interaction.depth (Max Tree Depth)
# shrinkage (Shrinkage)
# n.minobsinnode (Min. Terminal Node Size)

metric <- "RMSE"
trainControl <- trainControl(method="cv", number=10)

set.seed(99)
gbm.caret <- train(Sepal.Length ~ .
                   , data=iris
                   , distribution="gaussian"
                   , method="gbm"
                   , trControl=trainControl
                   , verbose=FALSE
                   #, tuneGrid=caretGrid
                   , metric=metric
                   , bag.fraction=0.75
                   )                  

print(gbm.caret)

caret.predict <- predict(gbm.caret, newdata=iris, type="raw")

rmse.caret<-rmse(iris$Sepal.Length, caret.predict)
print(rmse.caret)

R2.caret <- cor(gbm.caret$finalModel$fit, iris$Sepal.Length)^2
print(R2.caret)

#using gbm without caret with the same parameters
set.seed(99)
gbm.gbm <- gbm(Sepal.Length ~ .
               , data=iris
               , distribution="gaussian"
               , n.trees=150
               , interaction.depth=3
               , n.minobsinnode=10
               , shrinkage=0.1
               , bag.fraction=0.75
               , cv.folds=10
               , verbose=FALSE
               )
best.iter <- gbm.perf(gbm.gbm, method="cv")
print(best.iter)

train.predict <- predict.gbm(object=gbm.gbm, newdata=iris, 150)

rmse.gbm<-rmse(iris$Sepal.Length, train.predict)
print(rmse.gbm)

R2.gbm <- cor(gbm.gbm$fit, iris$Sepal.Length)^2
print(R2.gbm)

print(R2.caret-R2.gbm)
print(rmse.caret-rmse.gbm)
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.