独立性の検定と均質性の検定
私は基本的な統計コースを教えており、今日は2つのカテゴリーの独立性のカイ2乗検定と均質性の検定について説明します。これら2つのシナリオは概念的には異なりますが、同じテスト統計と分布を使用できます。均一性のテストでは、カテゴリの1つの限界合計は、設計自体の一部であると想定されます。これらは、各実験グループに対して選択された被験者の数を表します。しかし、カイ2乗検定はすべての周辺合計の条件付けを中心に展開するため、均質性の検定とカテゴリカルデータを使用した独立性の検定を区別しても、数学的影響はありません-少なくとも、この検定を使用する場合はありません。 私の質問は次のとおりです:独立性のテスト(すべての周辺がランダム変数)または同質性のテスト(周辺の1つのセットが存在する場合)に応じて、異なる分析をもたらす統計的思考または統計的アプローチの学校はありますか?デザインで設定)? 継続的なケースでは、同じ対象についてを観察し、独立性をテストするか、または異なる母集団で観察し、それらが同じ分布に由来するかどうかをテストする場合、方法は異なります(相関分析対t検定)。カテゴリカルデータが離散化された連続変数から得られた場合はどうなりますか?独立性と均質性のテストは区別できないでしょうか?(X 1、X 2)(X,Y)(X,Y)(X,Y)(X1,X2)(X1,X2)(X_1, X_2)