5
中心極限定理と大数の法則が一致しない場合
これは基本的に、私がmath.seで見つけた質問の複製であり、期待した答えが得られませんでした。 ましょう独立し、同一分布確率変数のシーケンスである、と及び。{Xi}i∈N{Xi}i∈N\{ X_i \}_{i \in \mathbb{N}}E[Xi]=1E[Xi]=1\mathbb{E}[X_i] = 1V[Xi]=1V[Xi]=1\mathbb{V}[X_i] = 1 の評価を検討する limn→∞P(1n−−√∑i=1nXi≤n−−√)limn→∞P(1n∑i=1nXi≤n) \lim_{n \to \infty} \mathbb{P}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^n X_i \leq \sqrt{n}\right) この式は、不等式イベントの両側が無限になりがちなので、操作する必要があります。 A)減算を試す 制限ステートメントを検討する前に、両側から\ sqrt {n}を減算しn−−√n\sqrt{n}ます。 limn→∞P(1n−−√∑i=1nXi−n−−√≤n−−√−n−−√)=limn→∞P(1n−−√∑i=1n(Xi−1)≤0)=Φ(0)=12limn→∞P(1n∑i=1nXi−n≤n−n)=limn→∞P(1n∑i=1n(Xi−1)≤0)=Φ(0)=12\lim_{n \to \infty} \mathbb{P}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^n X_i -\sqrt{n} \leq \sqrt{n}-\sqrt{n} \right) = \lim_{n \to \infty} \mathbb{P}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - 1) \leq 0\right) \\ = \Phi(0) = …